欧几里得学术活动是由滑铁卢大学(University of Waterloo)数学与计算机学院为全球适龄学生举办的高难度数学学术活动,同时也是加拿大中学阶段最具含金量、最被认可的学术活动。欧几里得数学学术活动难吗?考试难点究竟在哪里?(附学术活动辅导课程)
2023年欧几里得学术活动安排
适龄学生人群:
不得超过高三或12年级,无下限;高中毕业无升读大学可参加
考试时间:
美洲赛区:2023年4月4日
国际赛区:2023年4月5日
报名开放日:2022年冬季
报名截止日:2023年3月10日
考试形式:
考试时间为150分钟
共10道大题,总分100分
题型分为简答题和全解题两种
分数根据答案正确率与答题步骤决定
答案需要字迹清晰、卷面整洁、格式正确
考试难度:
欧赛考查的是学生的数学技能与思维能力
具有高标准的严格性和专业性
10道大题中的前几题为高中难度数学题
而最后几题则为高等数学难度数学题
为什么参加欧几里得数学学术活动
1. 奖学金Scholarships对于申请加滑铁卢大学数学学院的学生,更容易获得大学提供奖学金机会
2. 大学录取Admissions更容易获得滑铁卢大学数学学院以及其他知名大学的录取
3. 证书Awards参加学术活动并获得排名前25%的参赛者可以获得Certificates of Distinction的奖状
4. 技能Skills参加学术活动可以让学生提升数学技能,应用知识解决创新问题的能力,在跨主题的数学理论中建立联系。
其实欧几里得数学学术活动的分量并不比AMC弱。这个学术活动获奖不仅对于申请滑铁卢大学的奖学金有帮助,对于大家申请英美等国家的大学也是不错的敲门砖。
翰林考点分布:上海、北京、深圳,比赛形式为线下
提前规划学术活动报名,报名事项咨询请扫码
【免费领取】学术活动真题+解析,名师专业解答+课程优惠信息不容错过
班型
3-8人小班,满3人开班,共40课时
报名须知
1、 适合人群:12年级及以下年级学生。
2、 滚动开班,欢迎一起组班
3、 Euclid培训班为3-8人小班,满3人开班。
课程大纲
Main Topics | Selected Essential Details (Materials with * are aimed for the potential last Problems) | |
Number Theory | Prime factorization | Number of factors, Sum/Product of factors |
LCM and GCD, *Euclidean Algorithm and Bézout's Theorem | ||
Congruence and Modular Algebra | Principles of Modular Calculations | |
*Euler’s Theorem/Fermat's Little Theorem | ||
*Chinese Remainder Theorem(CRT) | ||
Digits and Base-n Representation | Mutual Conversion between different bases | |
Diphantine Equations | Estimation and Molular Method | |
Algebra | Sequences | Arithemetic and Geometric Sequences |
Periodic Sequences, *Recursive Sequences and Characteristic Equation Method | ||
*Conjecture and Mathematical Induction Proof | ||
Functions and Equations | Elementary Functions (Linear, Quadratic, Exponential, Logarithmic, Trigonometric) and their properties | |
Functional Equations | ||
*Gaussian/Floor function | ||
Inequalities and Extreme Value Problems | Simple Polynomial Inequalities | |
AM-GM Inequality, *Cauchy inequality | ||
Polynomials | Division Algorithm of Polynomials and the Remainder's Theorem | |
Fundamental Theorem of Algebra (Polynomial Factorization) and Vieta's Theorem | ||
The Rational Root Theorem | ||
Geometry | Triangles and Polygons | The Law of Sines, The Law of Cosines |
Area Method and Heron's formula | ||
*Menelaus's theorem, Ceva's theorem, Stewart Theorem | ||
Centers of triangle | ||
Circles | Chords, Arcs, Tangents, Inscribed and Central accepted angles | |
Cyclic Quadrilateral | ||
Power of a Point Theorem, *Ptolemy's theorem | ||
Basic Coordinate Geometry | Coordinate System and Equations of lines, Circles | |
Basic Solid Geometry | Lines in space, Planes; Rectangular Box, Pyramids, Prisms, Sphere and Cones,Frustums | |
Combinatorics | Basic Counting Principle | Sum Rules and Product Rules |
Permutations and Combinations | Combinatorics numbers and *Combinatorics identities | |
Grouping Theorems, Boards Method and the Problem of Balls into Boxes | ||
Logic reasoning | *Pigeonhole principle |
© 2024. All Rights Reserved. 沪ICP备2023009024号-1