Initially Alex, Betty, and Charlie had a total of peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats of his peanuts, Betty eats of her peanuts, and Charlie eats of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially.
There is a chance of rain on Saturday and a chance of rain on Sunday. However, it is twice as likely to rain on Sunday if it rains on Saturday than if it does not rain on Saturday. The probability that it rains at least one day this weekend is , where and are relatively prime positive integers. Find .
Let and be real numbers satisfying the systemFind the value of .
An rectangular box is built from unit cubes. Each unit cube is colored red, green, or yellow. Each of the layers of size parallel to the faces of the box contains exactly red cubes, exactly green cubes, and some yellow cubes. Each of the layers of size parallel to the faces of the box contains exactly green cubes, exactly yellow cubes, and some red cubes. Find the smallest possible volume of the box.
Triangle has a right angle at . Its side lengths are pairwise relatively prime positive integers, and its perimeter is . Let be the foot of the altitude to , and for , let be the foot of the altitude to in . The sum . Find .
For polynomial , define . Then , where and are relatively prime positive integers. Find .
Squares and have a common center and . The area of is 2016, and the area of is a smaller positive integer. Square is constructed so that each of its vertices lies on a side of and each vertex of lies on a side of . Find the difference between the largest and smallest positive integer values for the area of .
Find the number of sets of three distinct positive integers with the property that the product of and is equal to the product of and .
The sequences of positive integers and are an increasing arithmetic sequence and an increasing geometric sequence, respectively. Let . There is an integer such that and . Find .
Triangle is inscribed in circle . Points and are on side with . Rays and meet again at and (other than ), respectively. If and , then , where and are relatively prime positive integers. Find .
For positive integers and , define to be -nice if there exists a positive integer such that has exactly positive divisors. Find the number of positive integers less than that are neither -nice nor -nice.
The figure below shows a ring made of six small sections which you are to paint on a wall. You have four paint colors available and you will paint each of the six sections a solid color. Find the number of ways you can choose to paint the sections if no two adjacent sections can be painted with the same color.
Beatrix is going to place six rooks on a chessboard where both the rows and columns are labeled to ; the rooks are placed so that no two rooks are in the same row or the same column. The of a square is the sum of its row number and column number. The of an arrangement of rooks is the least value of any occupied square.The average score over all valid configurations is , where and are relatively prime positive integers. Find .
Equilateral has side length . Points and lie outside the plane of and are on opposite sides of the plane. Furthermore, , and , and the planes of and form a dihedral angle (the angle between the two planes). There is a point whose distance from each of and is . Find .
For let and . Let be positive real numbers such that and . The maximum possible value of , where and are relatively prime positive integers. Find .
108
107
265
180
182
275
840
728
262
043
749
732
371
450
863
1.
Let be the common ratio, where . We then have . We now have, letting, subtracting the 2 equations, , so we have or , which is how much Betty had. Now we have , or , or , which solving for gives , since , so Alex had peanuts.
2.
Let be the probability that it rains on Sunday given that it doesn't rain on Saturday. We then have . Therefore, the probability that it doesn't rain on either day is . Therefore, the probability that rains on at least one of the days is , so adding up the numbers, we have .
3.
First, we get rid of logs by taking powers: , , and . Adding all the equations up and using the property, we have , so we have . Solving for by substituting for in each equation, we get , so adding all the absolute values we have .
4.
By counting the number of green cubes different ways, we have , or . Notice that there are only possible colors for unit cubes, so for each of the layers, there are yellow cubes, and similarly there are red cubes in each of the layers. Therefore, we have and . We check a few small values of and solve for , checking gives with a volume of , gives with a volume of , and gives , with a volume of . Any higher will , so therefore, the minimum volume is .
5.
Note that by counting the area in 2 ways, the first altitude is . By similar triangles, the common ratio is for reach height, so by the geometric series formula, we have . Multiplying by the denominator and expanding, the equation becomes . Cancelling and multiplying by yields , so and . Checking for Pythagorean triples gives and , so
6.
Note that all the coefficients of odd-powered terms is an odd number of odd degree terms multiplied together, and all coefficients of even-powered terms have an even number of odd degree terms multiplied together. Since every odd degree term is negative, and every even degree term is positive, the sum is just equal to , so the desired answer is .
7.
Letting and , we have by CS inequality. Also, since , the angles that each square cuts another are equal, so all the triangles are formed by a vertex of a larger square and adjacent vertices of a smaller square are similar. Therefore, the areas form a geometric progression, so since , we have the maximum area is (the areas of the squares from largest to smallest are forming a geometric progression).
The minimum area is (every square is half the area of the square whose sides its vertices touch), so the desired answer is .
8.
Note that the prime factorization of the product is . Ignoring overcounting, by stars and bars there are ways to choose how to distribute the factors of , and ways to distribute the factors of the other primes, so we have ways. However, some sets have numbers that are the same, namely the ones in the form and , which are each counted times, and each other set is counted times, so the desired answer is .
9.
Since all the terms of the sequences are integers, and 100 isn't very big, we should just try out the possibilities for . When we get to and , we have and , which works, therefore, the answer is .
10.
Let , , and . Note that since we have , so by the Ratio LemmaSimilarly, we can deduce and hence .
Now Law of Sines on , , and yieldsHencesoHence and the requested answer is .
Edit: Note that the finish is much simpler. Once you get, , so .
11.
We claim that an integer is only -nice if and only if . By the number of divisors formula, the number of divisors of is . Since all the s are divisible by in a perfect power, the only if part of the claim follows. To show that all numbers are -nice, write . Note that has the desired number of factors and is a perfect kth power. By PIE, the number of positive integers less than that are either or is , so the desired answer is .
12.
Choose a section to start coloring. Assume, WLOG, that this section is color . We proceed coloring clockwise around the ring. Let be the number of ways to color the first sections (proceeding clockwise) such that the last section has color . In general (except for when we complete the coloring), we see thati.e., is equal to the number of colorings of sections that end in any color other than . Using this, we can compute the values of in the following table.
Note that because then adjacent sections are both color . We multiply this by to account for the fact that the initial section can be any color. Thus the desired answer is .
13.
We casework to find the number of ways to get each possible score. Note that the lowest possible score is and the highest possible score is . Let the bijective function denote the row number of the rook for the corresponding column number.
For a score of , we must have , and we can arrange the rest of the function however we want, so there are ways.
For a score of , we must have either or , and we can arrange the rest of the rooks however we want, so by PIE the number of ways is .
For a score of , we must have , , or . If , we just don't want , if , we don't want , or if , we don't want , otherwise we can arrange the function however we like. If at least of the values rooks have a value of , we can arange the rest of the rooks however we like, so there are by PIE.
If the score is , then we have either , , , or . If we have the first case, we don't want , , or , so by PIE the number of bad cases is . If we have the second case, then we don't want , , or , so similarly there are bad cases. Therefore, there are a total of good cases for each one. The number of ways to get is because we don't want , the number of ways to get is ways because we don't want , the number of ways to get is ways because we don't want , and the number of ways to get is ways because we don't want . The number of ways to get at least cases satisfied is because we can arrange the remaining rooks however we like, and the number of ways to get all cases satisfied is ways because we can arrange the remaining rooks however we like, so by PIE we have ways to get a score of .
The only way to get a score of is to have all the rooks run on the antidiagonal. Therefore, the number of ways to get a sum of is .
Thus, the expected sum is , so the desired answer is .
14.
The inradius of is and the circumradius is . Now, consider the line perpendicular to plane through the circumcenter of . Note that must lie on that line to be equidistant from each of the triangle's vertices. Also, note that since are collinear, and , we must have is the midpoint of . Now, Let be the circumcenter of , and be the foot of the altitude from to . We must have . Setting and , assuming WLOG , we must have . Therefore, we must have . Also, we must have by the Pythagorean theorem, so we have , so substituting into the other equation we have , or . Since we want , the desired answer is .
15.
Note thatSubstituting this into the second equation and collecting terms, we findConveniently, so we findThis is the equality case of the Cauchy-Schwarz Inequality, so for some constant . Summing these equations and using the facts that and , we find and thus . Hence the desired answer is .
最新学术活动真题解析免费领,高能讲座不间断
完整版真题资料可以底部二维码免费领取↓↓↓
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1