2018年AP考试第一科就要开始进行了,相信大家已经准备的差不多了,我们再来一起回顾一下AP考试化学部分的重要内容。
2018年AP化学的考试时间是2018年5月7日上午7:30。
2014年AP化学改革后,AP化学的知识构架由原来的二十几个知识点章节,统一归纳成6大知识点(6 Big Ideas)。具体如下:
Big Idea#1是化学学习的基础,讲了原子和元素并引申到了物质的构成。
The chemical elements are fundamental building materials of matter, andall matter can be understood in terms of arrangements of atoms. These atomsretain their identity in chemical reactions.
Big Idea#2是物质构成的核心,讲了物质构成中的化学键和理想气体。
Chemical and physical properties of materials can be explained by thestructure and the arrangement of atoms, ions, or molecules and the forcesbetween them.
Big Idea#3是传统考试的重点,讲了化学反应中的电子转移和能量变化。
Changes in matter involve the rearrangement and/or reorganization of atomsand/or the transfer of electrons.
Big Idea#4是抽象知识的难点,讲了化学反应的机理和化学反应速率。
Rates of chemical reactions are determined by details of the molecularcollisions.
Big Idea#5是承上启下的关键,讲了物质能量的变化和热力学原理。
The laws of thermodynamics describe the essential role of energy andexplain and predict the direction of changes in matter.
Big Idea#6是计算考察的必考,讲了化学平衡以及相关能量变化。
Any bond or intermolecular attraction that can be formed can be broken.These two processes are in a dynamic competition, sensitive to initialconditions and external perturbations.
美国大学理事会在改革后对所考察知识点的具体范围,深度都做出了较为明确的要求,针对每个知识点(Big Idea)要求掌握不同的基本知识点(Essential Knowledge)和达到明确的学习目的(LearningObjective)。
建议学习中首先需要弄清楚每个知识点要求掌握的学习目的(Learning Objective)。学习中需要将学习目的(Learning Objective),基本知识点(EssentialKnowledge)和6大方向(6 Big idea)等内容进行串联,形成知识网络才能达到良好的学习效果。
2. AP化学的考试题型和分数分布
AP化学的试卷结构和分数分布
AP化学 | ||||
题型 | 数量 | 答题时间 | 原始分数 (需转换为百分制) | 分数权重 (百分制两部分各占一半分数) |
第一部分: 单选题 | 60 | 90分钟 | 60 * 1分/题=60分 | 50% |
第二部分:简答题 | 3(长) | 90分钟 | 无固定分数(每道题4-13分不等)
|
50% |
4(短) |
注:考场上,AP化学考试的总答题时间为3个小时,中间休息10分钟。单选题和简答题两部分是分开进行的。单选题考完要收回答题卡和试卷册,中间休息后发简答题的试卷册。所以考生不能用简答题的答题时间回答单选题。化学公式表两部分题目都可以使用,但计算器只能在简答题部分使用。
AP化学考试百分制分数与5分制的转化表:
AP化学原始分 | AP化学5分制的分数 |
75-100分 | 5分 |
62-74分 | 4分 |
50-61分 | 3分 |
39-49分 | 2分 |
0-38分 | 1分 |
注:AP化学的成绩为5分制,每年的分数都是以曲线分布来计算,称之为5分曲线(a Five-point Grade Scale)。以大学理事会公布的2011年数据为例,16.2%的应试者得5分(Best),18.5%的应试者得4分,19.6%的应试者得3分,14.8%的应试者得2分和30.9%的应试者得1分。这个分布比例并不是一成不变的,大学理事会会根据每年的考试情况将分布比例进行调整。
3. 命题方向
改革后全球范围内得5分4分比例明显减少。而对中国学生来说,更是一个巨大的挑战。就整个趋势来看,AP改革将考试难度从计算方向调整到了概念化理解方向。删减了不少中国学生的强项计算题,转而侧重实验题,图像理解题,概念应用题,而这部分恰恰是中国学生的薄弱环节。试卷中的图形表格数量远远高于去年考试,一道题目的阅读量也增加了20%左右,所以怎么更快更好的读懂题成为的必须解决的问题。要求学习过程中一定要把概念原理理解透,并且能应用到实验分析中才行。
知识点的重点和难点:
化学平衡:此部分为每年的必考内容,分清楚 Keq,Q, Ka,Kb,Kw和Ksp 分别代表的化学平衡的意义。根据平衡公式进行溶液浓度的计算,部分情况下涉及到滴定实验,多考察酸碱滴定部分,考题多于不同物质的量的滴定溶液的PH值的图像相结合。
电化学:容易混淆电解池和原电池的基本概念,根据氧化还原反应的基本原理判断阴极和阳极以及对应的半反应,阴极得电子发生还原反应,阳极失电子发生氧化反应。原电池无外接电源,根据标准还原电动势计算原电池电动势。根据电动势计算吉布斯自由能。
热力学:焓变与熵变基本概念要理解区分,在不同条件下,计算未知反应的焓变,可以通过键能,标准反应生成焓,汉斯定律等。在焓变和熵变基础上计算吉布斯自由能。
以下是各个部分的要点:
1. Black body radiation—undermine classical physics--Mac Plank E=hv -- photoelectric effect
2. Spectra: continuous spectrum(all color), emission lines spectra(color with special energy are on the spectra), absorption spectra (black lines, reverse of emission lines)
3. En=-Rn(1/n^2) 1/wavelength=Rh(1/(n1)^2-1/(n2)^2)
4. For one electron atoms or ions: Bohr Model (classic physics+ Rutherford model+ quantum theory)
(1)angular momentum(energy) is quantized, electron in orbit radiate no energy
(2)photon-excitization-excited state-move back-electromagnetic radiation
(3)e can exist in possible circular orbit with fixed radius
5. E=-2.18*10^-18/n^2
6. First ionization energy of H: 2.18*10^-18
7. wave and particle duality: De Broglie wavelength=h/p=h/mv=10^-10m
8. Heisenberg uncertainty principle: dx*dp>=k/4pi. It is impossible to determine position and momentum at the same time.
9. Wave mechanical model:
(1)calculate possible energy states and positions
(2) Quantum number and wave function (probability of locating an e in a region in space)
10. Quantum numbers:
(1) principle quantum number: n, determine size and energy of orbital
(2) angular momentum number: l (0——n-1) shape of orbital
(3) magnetic quantum numbers: ml (-l——l) orientation
(4) Spin quantum number: ms=+-1/2 spin
11. when Z>1 : nuclear charge is greater, e and e repulsion, penetration (cause of fraction Zeff)
1. Group1: alkali metal, group2:alkali earth metal, group5:pnictogens(stifle), group6: chalcogens (elements to make ore), group7:halogen, group8: noble gas
2. Transition metal: 3-12. Inner transition element: actinides and lanthanides
3. Metallic character decreases from Fr to F
metal | non metal |
reducing agent | oxidizing agent |
heat/electric conductivity | no heat/electric conductivity |
shiny | not shiny |
hard | soft |
Ductile , compressible | not ductile, compressible |
delocalized e | no delocalized e |
basic oxide | acidic oxide |
4. Semimetal: conduct electricity and very low temperature, superconductor
5. D-block: colored compound, complex ion, many oxidation states, magnetic properties, catalysis
6. Atomic radius: increase down a group because: valence n increases, valence e further from nucleus, an extra full shell repels other e to make it bigger
Decrease across a period because: e is added to the same valence shell, shielding by inner shell is constant, Zeff increases so valence e is pulled closer
7. Radius of ions: cation is smaller and anion is bigger.
8. Electronegativity: ability of a bonded atom to attract a shared pair of e.
9. Down a group and En decreases because atoms have bigger radius. Across a period En increases because atom is smaller and Zeff increases.
10. Ionization energy: first ionizing energy: E(g)-E+(g)+e- second ionizing energy: E(g)-E2+(g)+2e-
11. Down a group IE decreases as radius increases and nuclei have less attraction of valence electron, across a period IE increases as Zeff increases, attraction increases and it is harder to pull a e away. Small trend because e is spinning paired and repulsion exist between 2e in the same orbital
12. Successive ionization energy: pick 1 element and takes away its electrons one by one, the jump of energy is orbital because: when there is less e, more attracted to nucleus, repulsion is smaller with less e, when removed a shell, it is harder to move another e as it is closer to the nucleus
13. Electron affinity: first EA: E(g)+e—E-(g)
14. Trends are not clear but basic trends are: down a group less negative as radius increases-attraction decreases-less energy released, across a period more negative as Zeff increases-attraction increases-energy released increases.
15. Group1: lowest 1stIE in periodic table, slightly negative EA, keen to give up e but weakly to accept e
16. Group7: high1stIE, high negative EA, lose e with difficult but gain easily
17. Group8: very high 1stIE, slightly positive EA, tend not to lose or gain e easily.
1. Reason of bond: electrostatics, lower their energy
2. Bond: covalent(non-metal and non-metal), ionic(non-metal and metal), metallic(metal and metal)
3. Lewis theory: octet rule. Every atom tens to have 8 e. discovered by noble gas
4. Lattice energy: a measure of strength of attraction between ions Na(g)+ Cl(g)- NaCl(s) unit is KJ/mol. Measured in born-haber cycle(chemical way) and born-mayer cycle(LE=k(Z+*Z-)/r)
1. giant 3-D lattice
2. Hydration energy: energy used to make ions in water completely surround by a shell of water molecule. When LE<HE, soluble. Bigger radius, more electrons, higher HE. Endothermic dissolve is caused by entropy, like NH4NO3. HE is decided by Z and r.
3. High melting point and boiling point: it is hard to make ions vibrate so harder to pull them apart.
4. Conduct electricity: when molten or dissolved in water because ions can mobile
5. Brittle: when hit, cation and cation (anion and anion) will move and repel each other.
1. low melting point and high boiling point: it is easy to pull metal atoms apart but it is hard to completely separate an atom
2. good thermo and electric conductivity: mobile e-
3. luster
4. Malleable and ductile: forces of attraction are not broken. Ion slide over each other but still held together
5. melting point increases when Z increases: more e- and less radius
1. bond length and strength: long the bond, weaker it is
2. bond energy is measured in KJ/mol
3. poor conduction of electricity: no delocalized e- (except graphite)
4. melting point and boiling point: - giant lattice: high because hard to break bond -molecular solid: low because IMF is weak
5. diamond: -hard: 3D interlocking of covalent bond -not conduct electricity: all valence e is used in bond
6. Graphite: -conduct electricity: delocalized e -soft weak: LDF between layers are easy to overcome by force.
1. Contains complex ion and counter ion. Ex: [Co(NH3)6]3+(complex ion) + Cl-(counter ion)
2. ligand: provide both electron for covalent bond so must have lone pairs. Are around transition metal in complex ion.
3. name: name cation first, include oxidation state of cation, then name anion ex: hexaamminecobalt(iii) chloride
4. Formation reason: d orbital of metal is empty and overlap with electron orbital of ligand.
5. dative bond: a covalent bond In which the pair of e- is supplied by one of the 2 balanced atoms (Lewis base provides e- while Lewis acid do not)
1. Decide Lewis structure: -formula –central atom(one with lowest EN except H) –count e- -draw skeletal structure –add e-
2. electron deficient compound may violent octet rule ex: BF3
3. Formal charge: the electric charge an atom would have if all bonding electrons were shared equally with its bonded neighbor. Normally between -1 and +1
4. resonance is actually delocalized pi-bonds
5. Bond order: the bonds between two atoms, resonance are calculated by taking average
1. VSEPR theory: valence e- pairs repelling to minimize energy of molecule or polyatomic ion. Valence e- maximizes distance apart and determine the shape of molecules.
2. geometry shape:
type | # of bond | # of lone pairs | compound |
linear | 2 | 0 | CO2 |
trigonal planar | 3 | 0 | BF3 |
bent | 2 | 2 | H2O |
tetrahedral | 4 | 0 | CH4 |
trigonal pyramid | 3 | 1 | NH3 |
trigonal bipyramid | 5 | 0 | PCl5 |
t-shape | 3 | 2 | BrF3 |
octahedral | 6 | 0 | SF6 |
see-saw | 4 | 1 | SeF4 |
pentagonal bipyramid | 7 | 0 | TF7 |
pyramid | 5 | 1 | IF5 |
square planar | 4 | 2 | XeF4 |
3. all lone pairs are not include in the geometry shape
4. hybridization: (1)sp linear BeH2 (2) sp2 trigonal planar BF3 (3) sp3 tetrahedral (4)sp3d trigonal bipyramid PCl5, XeF2 (5)sp3d2 octahedral SF6, XeF4O, XeF4
5. molecular orbital theory: explains resonance like benzene
6. polarity:
(1) non polar: no permanent polarity, no dipole
(2) Polar: delta EN not zeros
7. Intermolecular forces:
(1)LDF electron fast moving causes temporary dipole. Down a group stronger because of more electrons (more polarizable) and bigger(less attraction of electron), more surface area contact stronger
(2) Hydrogen bond: because of (a)highly EN FONCl(b) no inner shells in H(c) small size of FONCl
(3) Ion dipole: ion + polar mole
(4) dipole-dipole
attraction forces | ||
ion present | no ions | |
ions only | polar only | non polar only |
ionic bond | dipole-dipole | LDF
|
8. Like dissolves like: polar-polar force to overcome lattice energy, non polar- non polar because of entropy and enthalpy.
1. Pressure:1.01*10^5Pa=1atm=760mmHg
2. Temperature: K=C+273.15
3. Boyle’s law: PV=k(n,T is kept constant) Charle’s law: V=kT(P,n is kept constant) Avogadro’s law: V=kn(P,T is kept constant)
4. Kinetic molecular theory: assume(1)volume is neglectable (2) no IMF (3)elastic collision (4) average KE=T
5. Peak of number of molecule vs speed graph is approximately average KE
6. m1/m2=average v2^2/average v1^2 v1/v2=√m2/m1
7.Graham’s law of diffusion :average KE=1.5RT=0.5MV^2(for 1 mol) average v=√3RT/Mr (root-mean-square speed)
8. Real gas: tend to act like ideal gas when: T is high and P is low
9. (P+an^2/v(volume)^2)(V-bn)=nRT
1. collision theory: reaction is caused by collision with right orientation and enough Ea
2. -surface are increases: more probable of successful collision -temperature increases: more molecules with energy more than Ea
3. Archenius k=Ae^(-Ea/RT) A is pre-exponential constant R=8.314J/mol*K
4. rate= k[A]
5. Ea= Rln(k2/k1)/[(1/t1)-(1/t2)]
6. Reaction profile: for a chemical reaction Ea is fixed. Transition state is the state with highest PE, catalyst will decrease Ea without affecting delta H
7. r= k[A]^x*[B]^y*[C]^z x,y,z are the orders with respect to A,B,C
8. Initial rate method: (a)vary [a] and keep others constant and then (b) vary [B] and keep others constant. Log r= log k +x*log[A]i
9. mechanism: many simples steps together to form a reaction
10. intermediate: produced in one step and consumed in another
11. one can check if his mechanism is correct by finding intermediates.
particle emitted | change of mass | change of charge | |
alpha decay | 2 proton and 2 neutron | -4 | -2 |
beta decay | 1 electron | not change | 1 |
gamma decay | 1 photon | not change | not change |
Different power of abilities of different rays
ionizing | penetrating | |
alpha ray | high | low |
beta ray | low | middle |
gamma ray | high | very high |
(1) Alpha: harmless, cannot penetrate skin
(2) Beta: high, can harm bones, organs
(3) Gamma: high, will ionize molecules can cause them to repeal each other
(1) Fission: one nuclear becomes more than one particle, like U235
(2) Fusion: two or more nuclei combine to become one nuclear
知识点:
1)ΔS, ΔH, ΔG的含义和在标准非标准状态的正负值/定量运算,尤其是ΔH,那么多算法,你懂的。
2)关于热容、比热容、ΔG =ΔH - TΔS这些公式的运算和正负值含义。
3)熟练掌握酸碱的三种分类法,包括秒找共轭对,强/弱酸碱的判定,盐的弱酸/碱性判定,缓冲溶液的构成和作用原理。
4)能结合应用氧化数的增减和LEO & GER口诀,随手拆出两个半反应方程式,知道金属活动性和氧化电动势正相关。
5)理解酸碱滴定曲线的图像变化,从而适当选择指示剂;了解两种电池的运作原理;能够熟练判断电池两极,及其装置用途和实验现象。
计算出题点:
1)强/弱酸、强/弱碱、非中性盐、缓冲溶液、滴定过程中某一时刻的pH, pOH, Ka, Kb,某离子浓度的运算,全都要会,没商量。
2)会算转移电子数,两种电池的标准/非标准电池电势;用法拉第公式计算转移电量和电流;用Nernst Eq.把ΔG,Keq, Q,和Ecell联立解决,包括Q=K或者T=298K这些特殊情况下的简化公式。
下面是各个重点部分的要求和重点习题:
原子, 核化学
知识点:
1)了解Dalton,Thomson, Millikan, Rutherford探索原子结构时的主要手段和成果;熟悉Bohr模型和L.de Broglie波粒二相性的理论和相关公式, 会用Heisenberg测不准原理解释原子结构。
2)能懂且会用四个量子数表示电子排步。
3)理解Pauli, Aufbau, Hund, Energy Overlay这四条电子排步原则,熟记各条反例,如Cr, Cu, Mo, Ag这些半满轨道排步。
4)能解释原/离子半径、电离能、电亲和势、电负性的周期性递变原因;熟记s/p-block、半金属元素的符号缩写和英文全拼。
5)牢记核衰变反应的定义,各类核反应释放出的微粒or射线实质;熟练配平反应式和计算半衰期。
题 [Multiple Choice (MC)选自Barron’s 2009 ed., Free Response (FR)选自历年真题]:
MC: Chp.1 –Question (Q#) 10,12, 13, 15, 22; Chp.2 -Q6, 9, 13, 14; Chp.3 –Q1-3, 5, 7, 9。
FR: 2010年Q6 (a-c), 2007年Form B Q2、Q7 (a-c (i) ),2006年Form B Q7 (a, c,d)。
分子内的键和分子间的力,一丢丢化学运算题
知识点:
1) 能判别离子、金属、共价键,以及分析前两者强弱。
2)会画共价化合物的Lewis dot structure ,20秒一个。能从重叠方式不同解释sigma和pi键的区别,知道键级、键能、键长的联系。
3)能用VBT解释共价键实质,用HOT解释中心原子如何杂化,用VSEPR解释成键电子/孤对电子间如何排斥并占据空间。
4)能分析出且熟记成键电子数 + 孤对电子数小于等于六时的各种空间构型,包括中心原子的轨道杂化方式、几何体名称、键角、分子极性。
5)根据极性不同判断出三类分子间作用力,知道其强弱各自受哪些因素影响,以及它们的相对强弱。
6)掌握化合价配平法,半分钟一个式子;关于mole运算、经验/分子式、净离子方程式...这些初中就开始练的题,怎么还好意思错呢。
题:
MC: Chp.5 – Q10, 11, 13, 14;Chp.6 – Q5, 14, 17, 18, 20
FR: 2014年FormB Q5,2012年 Q4, 2006年Q7 (a-b), 。
物质的气、液态与变相
知识点:
1) 灵活应用气体分子的总/平均动能计算公式,以及可爱的Graham’sLaw, 知道由PV=nRT推出来的系列公式所对应的不同恒定量假设。
2)牢记理想气体的三个假设及其宏观影响、Vander Waal’s Eq.里a、b的对应含义,会应用气体分压概念进行各种定量运算。
3)能找出三相图、加热/冷却曲线图里的各种特殊点或线,尤其特殊的水。
4)了解溶液和电解质的定义,牢记浓度的两种表达方式、四个colligativeproperties的含义和定量计算。
5)牢记可溶物和难溶物各自的溶解规律及溶解度表示,理解Ksp和同离子效应的定量运算。
题:
MC: Chp.7 – Q8, 19, 20;Chp.8 – Q3, 13-16; Chp.9 – Q14, 17, 18, 20, 21。
FR: 2014年Q1、Q4 (a-b), 2013年Q1, 2012年 Q2 (a-e), 2011年 Form B Q2 (a-c), 2010年Q1。
反应的速率与平衡
知识点:
1)熟练运用实验法找出任一反应的Rate Law, 任一反应物的rxn order,k的数值和单位,熟记0,1,2级反应的对应的公式和各种表达图像,理解线性图像的特殊意义。
2)应运碰撞理论和ArrheniusEq.分析反应速率;牢记激活能、反应物浓度、温度、压强与反应速率的正负相关性。
3)理解基元反应的molecularity概念,会用多步反应中slow-determining step的反应机制替代总反应机制 。
4)牢记平衡常数的定义式,熟练掌握8种特殊情况下的Keq计算法。
5)熟练应用LeChatelier’s Law, 分分钟解释Haber process。
题:
MC: Chp.11-Q6, 8, 13,17,20, 22; Chp.10 –Q7, 9,13,17, 19
FR: 2012年 Q3(d-f), 2011年Q6 (c-d), 2010年FormB Q3 (c-f)。
热力学,酸碱和氧化还原反应
知识点:
1)ΔS, ΔH, ΔG的含义和在标准非标准状态的正负值/定量运算,尤其是ΔH,那么多算法,你懂的。
2)关于热容、比热容、ΔG=ΔH - TΔS这些公式的运算和正负值含义。
3)熟练掌握酸碱的三种分类法,包括秒找共轭对,强/弱酸碱的判定,盐的弱酸/碱性判定,缓冲溶液的构成和作用原理。
4)能结合应用氧化数的增减和LEO & GER口诀,随手拆出两个半反应方程式,知道金属活动性和氧化电动势正相关。
5)理解酸碱滴定曲线的图像变化,从而适当选择指示剂;了解两种电池的运作原理;能够熟练判断电池两极,及其装置用途和实验现象。
题 (这天以知识点为主,题不多,明天集中刷定量计算):
MC: Chp. 12-Q9-11, 12, 13,14
FR: 2014年 Q6(c), 2013年Q3, 2012年Q3
酸碱和电化学的计算
计算出题点:
1)强/弱酸、强/弱碱、非中性盐、缓冲溶液、滴定过程中某一时刻的pH, pOH, Ka, Kb,某离子浓度的运算,全都要会,没商量。
2)会算转移电子数,两种电池的标准/非标准电池电势;用法拉第公式计算转移电量和电流;用NernstEq.把ΔG,Keq, Q,和Ecell联立解决,包括Q=K或者T=298K这些特殊情况下的简化公式。
题:下方高能预警!
MC: Chp.14-Q4, 5, 9, 22,24; Chp.13-Q12, 13, 16, 18, 22
FR: 酸碱> 2014年Q2, 2012年Q1, 2011年FormB Q1, 2011年Q1, 2010年Form B Q5。氧化还原> 2014年Q3, 2013年Q2, 2012年Q6, 2010年FormB Q2。
烃与官能团,实验,和昨天没搞完的题
知识点:
1)熟记链/环状烃的基本定义,命名规律,结构通式。
2)熟悉八种官能团的命名规律,构成,是否有氢键,极性分析。
3)熟悉有机酸与醇的中和反应,聚合/裂解反应。
4)理解实验误差,熟悉溶液稀释和酸碱滴定操作流程、两种电池的原理& 装置 & 现象,集中记忆焰色反应、过渡金属溶液颜色、常见氧化剂溶液颜色。
最后,祝大家在2018年SAT和AP考试中取得好成绩!
© 2024. All Rights Reserved. 沪ICP备2023009024号-1