The basic principle of a Born-Haber cycle
Drawing a Born-Haber cycle step 1
Na (s) → Na (g) ΔHatꝋ = +108 kJ mol -1
½Cl2 (g) → Cl (g) ΔHatꝋ = +121 kJ mol -1
Drawing a Born-Haber cycle step 2 - creating the gaseous atoms
Na (g) → Na+ (g) + e– ΔHieꝋ = +500 kJ mol-1
Cl (g) + e– → Cl- (g) ΔHeaꝋ = -364 kJ mol-1
Drawing a Born-Haber cycle step 3 - creating the gaseous ions
Na (s) + ½Cl2 (g) → NaCl (s) ΔHfꝋ = -411 kJ mol -1
Na+(g) + Cl-(g) → NaCl (s) ΔHlattꝋ
Drawing a Born-Haber cycle step 4 - completing the cycle
Constructing a Born-Haber cycle for KCl
Construct a Born-Haber Cycle which can be used to calculate the lattice energy of potassium chloride
Answer
Constructing a Born-Haber cycle for MgO
Construct a Born-Haber Cycle which can be used to calculate the lattice energy of magnesium oxide
Answer
ΔHfꝋ = ΔHatꝋ + ΔHatꝋ + IE + EA + ΔHlattꝋ
ΔHfꝋ = ΔH1ꝋ + ΔHlattꝋ
So, if we rearrange to calculate the lattice energy, the equation becomes
ΔHlattꝋ = ΔHfꝋ - ΔH1ꝋ
Calculating the lattice energy of KCl
Given the data below, calculate the ΔHlattꝋ of potassium chloride (KCl)
Answer
Step 1: The corresponding Born-Haber cycle is:
Step 2: Applying Hess’ law, the lattice energy of KCl is:
ΔHlattꝋ = ΔHfꝋ - ΔH1ꝋ
ΔHlattꝋ = ΔHfꝋ - [(ΔHatꝋ K) + (ΔHatꝋ Cl) + (IE1 K) + (EA1 Cl)]
Step 3: Substitute in the numbers:
ΔHlattꝋ = (-437) - [(+90) + (+122) + (+418) + (-349)] = -718 kJ mol-1
Calculating the lattice energy of MgO
Given the data below, calculate the of ΔHlattꝋ magnesium oxide of magnesium oxide (MgO)
Answer
Step 1: The corresponding Born-Haber cycle is:
Step 2: Applying Hess’ law, the lattice energy of MgO is:
ΔHlattꝋ = ΔHfꝋ - ΔH1ꝋ
ΔHlattꝋ = ΔHfꝋ - [(ΔHatꝋ Mg) + (ΔHatꝋ O) + (IE1 Mg) + (IE2 Mg) + (EA1 O) + (EA2 O)]
Step 3: Substitute in the numbers:
ΔHlattꝋ = (-602) - [(+148) + (+248) + (+736) + (+1450) + (-142) + (+770)]
= -3812 kJ mol-1
转载自savemyexams
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1