翰林提供学术活动、国际课程、科研项目一站式留学背景提升服务!
400 888 0080
首页
国际少培课程
青少年国际竞赛汇总
CogAT认知能力测试
国际课程
A-Level课程辅导
IB课程辅导
AP课程辅导
IGCSE课程辅导
美高课程辅导
美高学分项目
国际竞赛
竞赛真题资料
理科国际竞赛
商科国际竞赛
STEM科创竞赛
文社科国际竞赛
丘成桐中学生科学奖
标化考试
牛剑G5笔试辅导
美国SAT考试
美国TOEFL考试
雅思IELTS考试
热门资讯
学校动态
赛事动态
课程动态
关于我们
学员奖项
2024-2025年度奖项
2022-2023年度奖项
2020-2021年度奖项
翰林导师
加入我们
商务合作
Home
»
国际课程
»
A-level课程
»
Details
CIE A Level Maths: Pure 3复习笔记1.2.2 Factor & Remainder Theorem
Category:
A-level课程
,
教材笔记
,
福利干货
Date: 2022年8月19日 下午12:58
Factor Theorem
What is the factor theorem?
The factor theorem is a very useful result about polynomials
A
polynomial
is an algebraic expression consisting of a finite number of terms, with non-negative integer indices only
At A level you will most frequently use the factor theorem as a way to simplify the process of factorising polynomials
What do I need to know about the factor theorem?
For a polynomial
f(
x
)
the factor theorem states that:
If
f(
p
) = 0
, then
(
x
-
p
)
is a factor of
f(
x
)
AND
If
(
x
-
p
)
is a factor of
f(
x
)
, then
f(
p
) = 0
Exam Tip
In an exam, the values of
p
you need to find that make
f(
p
) = 0
are going to be integers close to zero.
Try
p
=
1 and -1 first, then 2 and -2, then 3 and -3.
It is very unlikely that you'll have to go beyond that.
Worked Example
Remainder Theorem
What is the remainder theorem?
The
factor
theorem
is actually a special case of the more general
remainder
theorem
The
remainder
theorem
states that when the polynomial f(x) is divided by (x - a) the remainder is f(a)
You may see this written formally as f(x) = (x - a)Q(x) + f(a)
In
polynomial
division
Q
(x) would be the
result
(at the top) of the division (the
quotient
)
f(a) would be the
remainder
(at the bottom)
(x - a) is called the
divisor
In the case when f(a) = 0, f(x) = (x - a)Q(x) and hence (x - a) is a factor of f(x)– the
factor
theorem
!
How do I solve problems involving the remainder theorem?
Worked Example
Exam Tip
Exam questions will use formal mathematical language which can make factor and remainder theorem questions sound more complicated than they are.
Ensure you are familiar with the various terms from these revision notes
转载自savemyexams
Previous post: CIE A Level Maths: Pure 3复习笔记1.2.1 Polynomial Division
Next post: CIE A Level Maths: Pure 3复习笔记1.2.3 Factorisation
国际竞赛真题资料-点击免费领取!
美高学分项目重磅来袭!立即了解
AMC8备考管家服务全新上线!
在线登记
最新发布
值得所有生竞生参加!美国USABO生物竞赛从0到拿奖全攻略!附备考资料领取!
2025年USABO生物竞赛报考内容!快来看看新增了哪些考点?附备考资料领取!
国际两大生物竞赛全方位对比!BBO&USABO哪个适合你?附备考资料领取!
生物竞赛USABO终于讲清楚了!备考生物竞赛必看!附备考资料领取!
USABO生物竞赛详情!含金量如何?附备考资料领取!
生物“顶流”竞赛!2025年USABO生物奥赛考试时间确定!附备考资料领取!
备考干货来啦!2025年USABO竞赛最新考纲确定!附备考资料领取!
2025BBO&USABO报名通道已开启!USABO和BBO竞赛考哪个你选好了吗?附备考资料领取!
热门标签
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
欧几里得数学竞赛
Physics Bowl
袋鼠数学竞赛
John Locke
USABO
AMC12
USACO
AIME
IB
PhysicsBowl
NEC
BPhO
丘成桐中学科学奖
UKChO
欧几里得
HiMCM美国高中数学建模竞赛
SIC
Euclid
© 2025. All Rights Reserved.
沪ICP备2023009024号-1
国际竞赛
了解背提项目
国际课程
商务合作
Go to top