翰林提供学术活动、国际课程、科研项目一站式留学背景提升服务!
400 888 0080
首页
国际少培课程
青少年国际竞赛汇总
CogAT认知能力测试
国际课程
A-Level课程辅导
IB课程辅导
AP课程辅导
IGCSE课程辅导
美高课程辅导
美高学分项目
国际竞赛
竞赛真题资料
理科国际竞赛
商科国际竞赛
STEM科创竞赛
文社科国际竞赛
丘成桐中学生科学奖
标化考试
牛剑G5笔试辅导
美国SAT考试
美国TOEFL考试
雅思IELTS考试
美国SSAT考试
热门资讯
学校动态
赛事动态
课程动态
关于我们
学员奖项
2024-2025年度奖项
2022-2023年度奖项
2020-2021年度奖项
翰林导师
加入我们
商务合作
Home
»
国际课程
»
IB课程
»
Details
IB DP Maths: AI HL复习笔记4.6.2 Unbiased Estimates
Category:
IB课程
,
教材笔记
,
福利干货
Date: 2022年7月21日 下午4:36
Unbiased Estimates
What is an unbiased estimator of a population parameter?
An
estimator
is a
random variable
that is used to
estimate a population parameter
An
estimate
is the value produced by the estimator when a sample is used
An estimator is called unbiased if its expected value is equal to the population parameter
An estimate from an unbiased estimator is called an
unbiased estimate
This means that the
mean
of the
unbiased estimates
will get
closer
to the
population parameter
as
more samples
are taken
The
sample mean
is an
unbiased estimate
for the
population mean
The
sample variance
is
not an unbiased estimate
for the
population variance
On average the sample variance will
underestimate
the population variance
As the
sample size increases
the sample variance gets
closer to the unbiased
estimate
What are the formulae for unbiased estimates of the mean and variance of a population?
A sample of
n
data values (
x
1
, x
2
, ...
etc) can be used to find unbiased estimates for the mean and variance of the population
Is
s
n
-1
an unbiased estimate for the standard deviation?
Unfortunately
s
n
-1
is not an unbiased estimate for the standard deviation of the population
It is better to work with the unbiased variance rather than standard deviation
There is not a formula for an unbiased estimate for the standard deviation that works for all populations
Therefore you will not be asked to find one in your exam
How do I show the sample mean is an unbiased estimate for the population mean?
You
do not need to learn this proof
It is simply here to help with your understanding
Suppose the population of X has mean
μ
and variance
σ
²
Take a sample of
n
observations
X
1,
X
2,
..., X
n
E(
X
i
) = μ
Using the formula for a linear combination of
n
independent variables:
Why is there a divisor of
n
-1 in the unbiased estimate for the variance?
You
do not need to learn this proof
It is simply here to help with your understanding
Suppose the population of X has mean
μ
and variance
σ
²
Take a sample of
n
observations
X
1,
X
2,
..., X
n
E(
X
i
) = μ
Var(
X
i
) = σ
2
Using the formula for a linear combination of
n
independent variables:
Exam Tip
Worked Example
转载自savemyexams
Previous post: AQA A Level Maths: Pure复习笔记2.5.2 Polynomial Division
Next post: IB DP Maths: AI HL复习笔记4.7.1 The Binomial Distribution
国际竞赛真题资料-点击免费领取!
美高学分项目重磅来袭!立即了解
在线登记
最新发布
袋鼠数学竞赛怎么学?这几点很重要!
数学袋鼠竞赛是什么?一篇带你了解袋鼠数学竞赛!
袋鼠数学竞赛分数计算方式是什么?袋鼠数学竞赛多少分能获奖?
2025年袋鼠数学竞赛考什么?附2025年袋鼠数学竞赛备考建议!
袋鼠数学竞赛难吗?袋鼠数学竞赛获奖率如何?
袋鼠数学竞赛是双语考试吗?附2025年袋鼠数学竞赛安排!
重要通知!2025年袋鼠数学竞赛报名窗口开启!
2025年袋鼠数学竞赛要求有哪些?一文了解2025年袋鼠数学竞赛规则!
热门标签
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
欧几里得数学竞赛
Physics Bowl
袋鼠数学竞赛
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中学科学奖
欧几里得
UKChO
HiMCM美国高中数学建模竞赛
SIC
Euclid
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net
沪ICP备2023009024号-1
国际竞赛
了解背提项目
国际课程
商务合作
Go to top