Background radiation describes the low level of radiation present in the surroundings at all times
There are two types of sources of background radiation:
Natural sources
Man-made sources
Natural Sources
Radon gas from rocks and soil
Heavy radioactive elements, such as uranium and thorium, occur naturally in rocks in the ground
Uranium decays into radon gas, which is an alpha emitter
This is particularly dangerous if inhaled into the lungs in large quantities
Cosmic rays from space
The sun emits an enormous number of protons every second
Some of these enter the Earth’s atmosphere at high speeds
When they collide with molecules in the air, this leads to the production of gamma radiation
Other sources of cosmic rays are supernovae and other high energy cosmic events
Carbon-14 in biological material
All organic matter contains a tiny amount of carbon-14
Living plants and animals constantly replace the supply of carbon in their systems hence the amount of carbon-14 in the system stays almost constant
Radioactive material in food and drink
Naturally occurring radioactive elements can get into food and water since they are in contact with rocks and soil containing these elements
Some foods contain higher amounts such as potassium-40 in bananas
However, the amount of radioactive material is minuscule and is not a cause for concern
Man-Made Sources
Medical sources
In medicine, radiation is utilised all the time
Uses include X-rays, CT scans, radioactive tracers, and radiation therapy
Nuclear waste
While nuclear waste itself does not contribute much to background radiation, it can be dangerous for the people handling it
Nuclear fallout from nuclear weapons
Fallout is the residue radioactive material that is thrown into the air after a nuclear explosion, such as the bomb that exploded at Hiroshima
While the amount of fallout in the environment is presently very low, it would increase significantly in areas where nuclear weapons are tested
Nuclear accidents
Accidents such as that in Chernobyl contributed a large dose of radiation into the environment
While these accidents are now extremely rare, they can be catastrophic and render areas devastated for centuries
In the UK, radon gas is by far the largest proportion of background radiation, whereas radiation due to nuclear waste and fallout accounts for less than 1%
Corrected Count Rate
Background radiation must be accounted for when taking readings in a laboratory
This can be done by taking readings with no radioactive source present and then subtracting this from readings with the source present