Values of the capacitor discharge equation on a graph and circuit
The initial current through a circuit with a capacitor of 620 µF is 0.6 A.The capacitor is connected across the terminals of a 450 Ω resistor.Calculate the time taken for the current to fall to 0.4 A.
The equation for Q will be given on the data sheet, however you will be expected to remember that it is similar for I and V.
A capacitor is to be charged to a maximum potential difference of 12 V between its plate. Calculate how long it takes to reach a potential difference 10 V given that it has a time constant of 0.5 s.
Make sure you’re confident in rearranging equations with natural logs (ln) and the exponential function (e) for both charging and discharging equations. To refresh your knowledge of this, have a look at the AS Maths revision notes on Exponentials & Logarithms.
转载自savemyexams
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1