Bessie has a new cell phone with nine buttons, laid out as follows:
123 456 789
Bessie is trying to type out a given phone number in a hurry, so she decides to save time by pressing multiple buttons at the same time with one of her hooves. Specifically, Bessie's hoof might press a single digit, two digits that share a side (for twelve possible pairs in total), or four digits that form a square (1245, 2356, 4578, or 5689).
For example, if the phone number Bessie is trying to type is 123659874, she might attempt to save time by
Unfortunately, Bessie drastically overestimated her skill at performing this task - if Bessie's hoof pressess multiple buttons at the same time, then all of the digits will be typed in arbitrary order. So if Bessie attempts the above sequence of presses, she may end up typing 123596847 or 213659874 instead (or one of many other possibilities).
Given a sequence of digits that Bessie has typed, count the number of phone numbers that she could have been trying to type modulo 109+7109+7.
**Note: the time limit for this problem is 4s, twice the default.**
The first line contains TT (1≤T≤101≤T≤10), the number of independent test cases to solve.The next TT lines each contain a nonempty string of the digits 1 through 9. It is guaranteed that the total length of these strings does not exceed 105105.
For each test case, the number of phone numbers Bessie might have been trying to type modulo 109+7109+7.
5 1478 4455 5968 31313211 123659874
5 2 24 3 255
For the first case, Bessie might be trying to type any of the following five phone numbers:
1478 1487 4178 4187 1748
For example, if Bessie was trying to type 4187, she might have tried pressing 1 and 4 at the same time and then tried pressing 7 and 8 at the same time.
For the third case, as the numbers form a square, Bessie might have been trying to type any permutation of the input sequence.
Problem credits: Nick Wu
[/hide]
(Analysis by Richard Qi)
First, we consider an easier problem. Suppose our task was to verify whether some string TT could have been a string Bessie was trying to type, and let SS be the input string.
We can solve this easier task using a simple linear time DP. Process each digit of TT one at a time. Say that a string of digits s can be "rearranged" to t if Bessie can type t while trying to type s, and let dp[i]dp[i] be a boolean value which is True if S[1⋯i]S[1⋯i] can be rearranged to T[1⋯i]T[1⋯i]. Our goal is to check whether dp[N]=Truedp[N]=True, where N=|S|N=|S|. Notice that dp[i]=Truedp[i]=True iff dp[i−j]dp[i−j] is true for some 1≤j≤41≤j≤4, and the substring S[i−j+1⋯i]S[i−j+1⋯i] can be rearranged to T[i−j+1⋯i]T[i−j+1⋯i]. For checking these rearrangements of size at most 44, it suffices to check whether the substrings S[i−j+1⋯i]S[i−j+1⋯i] and T[i−j+1⋯i]T[i−j+1⋯i] are both permutations of a single digit, are both permutations of two digits that share a side, or are both permutations of four digits that form a square.
Now, our motivation for solving the original problem is as follows. Suppose we listed out all 9i9i possible strings of length ii (T1,T2,T3,⋯T1,T2,T3,⋯), and computed all dpdp values up to dp[i]dp[i] for each of these strings. Then, we could continue this process for i+1i+1 by copying each of the 9i9i strings and their dpdp values 99 times, and then continuing each of these copies with a distinct digit from 1−91−9, and finally computing dp[i+1]dp[i+1] for each of the new 9i+19i+1 strings using the previous dp[i]dp[i] values. Then, at the end, we count all strings which end with dp[N]=Truedp[N]=True. Clearly, this gives the correct answer, but is way too slow. However, as we show next, we can simulate this process using only linear time, as it is not necessary to write out all the dp values and all the strings. To do this, we will continually improve this extremely slow process until it can be done in linear time.
First, after computing dp[i]dp[i], we may discard dp[i−j]dp[i−j] for all j≥4j≥4. In other words, we could continue computing all dp values for strings of length NN up to dp[N]dp[N] using only the dp values dp[i−j]dp[i−j] for 0≤j≤30≤j≤3. This can easily be seen by observing our original dp algorithm for checking whether a string can be rearranged to another string; to compute dp[i+1]dp[i+1], we only need dp[i−j]dp[i−j] for j≤3j≤3. This saves quite a bit of time as we no longer need to copy the entire dp sequences.
Next, by the same reasoning, notice that we don't need to copy the entire length ii strings; we only need to copy the last 33 digits T[i−2],T[i−1],T[i]T[i−2],T[i−1],T[i] for each of the 9i9i strings TT.
Now, if we were to simulate the exponential process initially described, it has sped up significantly. We are still creating 9i9i strings and dp sequences at each timestep ii, but these strings and dp sequences are of constant length.
Additionally, we can remove any strings and dp sequences in the list at any point in time if they definitely will not result in a final dp value of NN (for example, if the last 44 recorded dp values are False).
Here is the key insight: Now that the 9i9i strings and dp sequences are of constant length, there cannot be more than a constant number of distinct (string, dp sequence) pairs. So, rather than listing them all out, we can store key value pairs of the form ((string, dp sequence), count), where count represents the number of the 9i9i strings in the original exponential process that correspond to a specified string and dp sequence. Thus, transitioning from ii to i+1i+1 can be done in constant time as there are only a constant number of unique (string, dp sequence) pairs. To recover the final answer, we sum the counts of all (string, dp sequence) pairs that have dp[N]=Truedp[N]=True. Thus, the original problem can now be done in O(N)O(N) time, but with large constant factor.
A naive implementation of the currently described algorithm is enough for N≤100N≤100. Also, if the phone numbers don't contain some digits, one can prove that there are less states to keep track of at each timestep, which could allow a naive implementation to pass some of these subtasks.
Richard's Code: (dp[i−3…i],S[i−2…i])(dp[i−3…i],S[i−2…i]) pairs are stored in a map with an integer that is a bitmask representing the dp sequence, and a vector which is the last 33 digits of the sequence. In the code, "bars" is the bitmask representing whether dp[i−j]=Truedp[i−j]=True for all 0≤j≤30≤j≤3. For each possible digit from 11 to 99, the string and dp sequence change, which are the variables "new_nums" and "new_bars", respectively.
#include <bits/stdc++.h> using namespace std; using ll = long long; using str = string; using pi = pair<int, int>; #define mp make_pair #define f first #define s second using vi = vector<int>; #define sz(x) int((x).size()) #define all(x) begin(x), end(x) #define sor(x) sort(all(x)) #define pb push_back #define bk back() #define ins insert const int MOD = 1e9 + 7; /** * Description: Modular arithmetic. * Source: KACTL * Verification: https://open.kattis.com/problems/modulararithmetic */ struct mi { int v; explicit operator int() const { return v; } mi() : v(0) {} mi(ll _v) : v(int(_v % MOD)) { v += (v < 0) * MOD; } }; mi &operator+=(mi &a, mi b) { if ((a.v += b.v) >= MOD) a.v -= MOD; return a; } mi operator+(mi a, mi b) { return a += b; } vi sliceVI(vi v, int l, int r) { assert(l >= 0 && l <= r && r <= sz(v)); vi res; for (int i = l; i < r; i++) { res.pb(v[i]); } return res; } vector<vi> good_subs; void genGoodSubs() { // put all good subsets into good_subs (good subsets are // those which bessie types with one tap) for (int i = 1; i <= 9; i++) { good_subs.pb({i}); } for (int i = 1; i + 3 <= 9; i++) { good_subs.pb({i, i + 3}); } for (int i = 1; i <= 2; i++) { for (int j = 0; j <= 6; j += 3) { int first_val = i + j; good_subs.pb({first_val, first_val + 1}); } } for (int i = 1; i <= 2; i++) { for (int j = 0; j <= 3; j += 3) { vi v; for (int k = 0; k <= 1; k++) { for (int l = 0; l <= 3; l += 3) { v.pb(i + j + k + l); } } sor(v); good_subs.pb(v); } } } bool isGoodSubset(vi v) { sor(v); for (auto u : good_subs) { if (u == v) return true; } return false; } void solve() { string S_inp; cin >> S_inp; vi S; S.pb(-100); for (auto u : S_inp) { S.pb(u - '0'); } int N = sz(S) - 1; auto isSubsetOf = [&](vi v, int r, int l) { set<int> S_elements; for (int i = r; i >= l; i--) { if (i < sz(S) && i > 0) { S_elements.ins(S[i]); } } for (auto u : v) { if (!S_elements.count(u)) return false; } return true; }; map<pair<int, vi>, mi> dp; dp[mp(1, vi{1, 1, 1})] = mi(1); for (int i = 1; i <= N; i++) { // before the ith element to after processing the ith map<pair<int, vi>, mi> ndp; for (auto u : dp) { int bars = u.f.f; vi nums = u.f.s; mi ways = u.s; for (int new_dig = 1; new_dig <= 9; new_dig++) { // generate new nums vi new_nums{new_dig, nums[0], nums[1]}; // generate new bars int new_bars = 0; for (int old_bar = 0; old_bar < 4; old_bar++) { if (!((bars >> old_bar) & 1)) continue; if (old_bar + 1 < 4) { // transition from old bar going left (adding 1) // check whether the stuff after the bar in constructed string is a // subset of the 4 things of actual string after the bar vi right_of_constructed_bar = sliceVI(new_nums, 0, old_bar + 1); if (isSubsetOf(right_of_constructed_bar, i - (old_bar) + 3, i - (old_bar))) { new_bars |= (1 << (old_bar + 1)); } } // transition from old bar going to 0 bar vi all_nums = new_nums; all_nums.pb(nums.bk); // 4 numbers vi right_of_constructed_bar = sliceVI(all_nums, 0, old_bar + 1); if (isGoodSubset(right_of_constructed_bar) && isSubsetOf(right_of_constructed_bar, i, i - sz(right_of_constructed_bar) + 1)) { new_bars |= 1; } } if (new_bars == 0) continue; ndp[mp(new_bars, new_nums)] += ways; } } swap(dp, ndp); } mi ans = 0; for (auto u : dp) { if ((u.f.f >> 0) & 1) { ans += u.s; } } cout << ans.v << "\n"; } int main() { cin.tie(0)->sync_with_stdio(0); genGoodSubs(); int T; cin >> T; for (int t = 1; t <= T; t++) { solve(); } }
Many optimizations can be done to speed up the naive solution and receive full points. These include:
These optimizations are implemented in the code below:
#include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<int, int>; #define mp make_pair #define f first #define s second using vi = vector<int>; #define sz(x) int((x).size()) #define all(x) begin(x), end(x) #define sor(x) sort(all(x)) #define pb push_back #define bk back() const int MOD = 1e9 + 7; template <class T> void remDup(vector<T> &v) { // sort and remove duplicates sort(all(v)); v.erase(unique(all(v)), end(v)); } /** * Description: Modular arithmetic. * Source: KACTL * Verification: https://open.kattis.com/problems/modulararithmetic */ struct mi { int v; explicit operator int() const { return v; } mi() : v(0) {} mi(ll _v) : v(int(_v % MOD)) { v += (v < 0) * MOD; } }; mi &operator+=(mi &a, mi b) { if ((a.v += b.v) >= MOD) a.v -= MOD; return a; } mi operator+(mi a, mi b) { return a += b; } const int HASHMAX = 16 * 1000; struct Table { mi vals[HASHMAX]; bitset<HASHMAX> visited; vi keys; void addTo(int key, mi v) { if (visited[key] == 0) { visited[key] = 1; keys.pb(key); } vals[key] += v; } void reset() { for (const auto &u : keys) { vals[u] = 0; visited[u] = 0; } keys.clear(); } }; vector<vi> good_subs; bool is_good_new_set[100005]; void genGoodSubs() { for (int i = 1; i <= 9; i++) { good_subs.pb({i}); } for (int i = 1; i + 3 <= 9; i++) { good_subs.pb({i, i + 3}); } for (int i = 1; i <= 2; i++) { for (int j = 0; j <= 6; j += 3) { int first_val = i + j; good_subs.pb({first_val, first_val + 1}); } } for (int i = 1; i <= 2; i++) { for (int j = 0; j <= 3; j += 3) { vi v; for (int k = 0; k <= 1; k++) { for (int l = 0; l <= 3; l += 3) { v.pb(i + j + k + l); } } sor(v); good_subs.pb(v); } } for (auto u : good_subs) { int mask = 0; for (auto x : u) { mask += 1 << x; } is_good_new_set[mask] = 1; } } void solve() { string S_inp; cin >> S_inp; vi S{-100}; for (auto u : S_inp) { S.pb(u - '0'); } int N = sz(S) - 1; vector<vi> S_masks = vector<vi>(N + 1, vi(5)); // (i, j) -> mask starting at i, ending at i+j for (int i = 1; i <= N; i++) { for (int j = 0; j <= 4; j++) { for (int k = 0; k <= j; k++) { S_masks[i][j] |= (1 << S[i + k]); } } } Table *dp = new Table(); Table *ndp = new Table(); dp->addTo(1 + 111 * 16, mi(1)); for (int i = 1; i <= N; i++) { // before the ith element to after processing the ith // assert(sz(dp->keys) <= 50); vi cand_new_digs; for (int j = -3; j <= 3; j++) { if (i + j >= 1 && i + j <= N) { cand_new_digs.pb(S[i + j]); } } remDup(cand_new_digs); ndp->reset(); for (auto u : dp->keys) { int bars = u % 16; int nums = u / 16; int max_bars = 0; for (int j = 0; j < 4; j++) { if ((bars >> j) & 1) { max_bars = j; } } mi ways = dp->vals[u]; for (int new_dig : cand_new_digs) { // generate new nums array<int, 4> all_nums_arr{new_dig, nums % 10, (nums / 10) % 10, (nums / 100) % 10}; // generate new bars int new_bars = 0; int bar_2_set = 0; for (int old_bar = 0; old_bar <= max_bars; old_bar++) { int bar_2_set_dig = all_nums_arr[old_bar]; if ((bar_2_set >> bar_2_set_dig) & 1) { break; } else { bar_2_set |= 1 << bar_2_set_dig; if ((bars >> old_bar) & 1) { if ((bar_2_set & S_masks[i - old_bar][3]) == bar_2_set) { if (is_good_new_set[bar_2_set] && bar_2_set == S_masks[i - old_bar][old_bar]) { new_bars |= 1; } if (old_bar < 3) { new_bars |= 1 << (old_bar + 1); } } } } } if (new_bars == 0) continue; // optional optimization: zero out digits that don't matter for (int j = 3; j; --j) { if (new_bars & (1 << j)) { break; } all_nums_arr[j - 1] = 0; } int new_nums = all_nums_arr[0] + 10 * all_nums_arr[1] + 100 * all_nums_arr[2]; ndp->addTo(new_bars + 16 * new_nums, ways); } } swap(dp, ndp); } mi ans = 0; for (int u : dp->keys) { if (((u % 16) >> 0) & 1) { ans += dp->vals[u]; } } cout << ans.v << "\n"; } int main() { cin.tie(0)->sync_with_stdio(0); genGoodSubs(); int T; cin >> T; for (int t = 1; t <= T; t++) { solve(); } }
The number of distinct states stored in the hash table can be bounded above by 4⋅3⋅2⋅23+4⋅3⋅22+4⋅2+1=2494⋅3⋅2⋅23+4⋅3⋅22+4⋅2+1=249, corresponding to the cases where the first j≥i−3j≥i−3 such that dp[j]=1dp[j]=1 are j=i−3,i−2,i−1,ij=i−3,i−2,i−1,i respectively. Though in the test data, the number of states never exceeds 5050.
Bonus: Try to prove a better bound on the number of distinct states or generate a test case with more than 5050 distinct states.
[/hide]
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1