Problem 1
Problem 2
Problem 3
We must place the classes into the periods such that no two balls are in the same period or in consecutive period.
Ignoring distinguishability, we can thus list out the ways that three periods can be chosen for the classes, when periods cannot be consecutive:
Periods
Periods
Periods
Periods
There are ways to place nondistinguishable classes into periods such that no two classes are in consecutive periods. For each of these ways, there are orderings of the classes among themselves.
Therefore, there are ways to choose the classes.
First draw 6 's representing the 6 periods.
Let the 's represent the classes that occupy each period.
There are 6 ways to place the first class.
There are 4 ways to place the second class.
There is 1 way to place the third class.
We multiply
—Baolan
Problem 4
Problem 5
Problem 6
This is an alternate solution if you don't want to solve using algebra. First, notice that the median is the average of and . Therefore, , so the answer is , which must be odd. This leaves two remaining options: and . Notice that if the answer is , then is odd, while is even if the answer is . Since the average of the set is an integer , the sum of the terms must be even. is odd by definition, so we know that must also be odd, thus with a few simple calculations is odd. Because all other answers have been eliminated, is the only possibility left. Therefore, .
Problem 7
Problem 8
Problem 9
Problem 10
The graph looks something like this:
Now it's clear that there are intersection points. (pinetree1)
can be rewritten to . Substituting for in the second equation will give . Splitting this question into casework for the ranges of y will give us the total number of solutions.
Case 1:
will be negative so
Subcase 1:
is positive so and and
Subcase 2:
is negative so . and so there are no solutions ( can't equal to )
Case 2:
Case 3:
will be positive so
Subcase 1:
will be negative so --> . There are no solutions (again, can't equal to )
Subcase 2: y<4/3
will be positive so --> . and Solutions:
NOTE: Please fix this up using latex I have no idea how
Solution by Danny Li JHS
Problem 11
Problem 12
Problem 13
Problem 14
Base switch to log 2 and you have
.
Then . so and we have leading to (jeremylu)
Problem 15
Draw a square.
There are only ten squares we get to actually choose, and two independent choices for each, for a total of codes. Two codes must be subtracted (due to the rule that there must be at least one square of each color) for an answer of
Problem 16
First, rewrite the second equation to And substitute into the first equation: Since we're only interested in seeing the interval in which a can exist, we find the discriminant: . This value must not be less than 0 (It is the square root part of the quadratic formula). To find when it is 0, we find the roots:Since , our range is
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Let be the origin, and lie on the x axis.
We can find and
Then, we have and
Notice that the tangent of our desired points is the the absolute difference between the y coordinates of the two points divided by the absolute difference between the x coordinates of the two points.
This evaluates toNow, using sum to product identities, we have this equal toso the answer is (lifeisgood03)
Note that , the midpoint of major arc on is the Miquel Point of (Because ). Then, since , this spiral similarity carries to . Thus, we have , so .
But, we have ; thus .
Then, as is the midpoint of the major arc, it lies on the perpendicular bisector of , so . Since we want the acute angle, we have , so the answer is .
(stronto)
Problem 24
Problem 25
© 2024. All Rights Reserved. 沪ICP备2023009024号-1