机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。今天小编想要推荐给大家的这个科研项目就是要用到机器学习的知识。课题的题目就是南加大探究项目:基于机器学习的信用卡欺诈检测。
机器学习
Machine Learning, ML
是人工智能的一个分支。它也是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。
机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。
盗刷信用卡风险已经成为困扰全球银行信用卡部门的难题之一。仅以美国为例,美联储的支付调查报道显示,2012年全美信用卡支付总金额达到260亿美元,这其中未经授权的信用卡支付,也就是盗刷信用卡的金额高达61亿美元。衡量信用卡交易的风险涉及一系列复杂的技术,从金融到经济到法律再到信息科学。传统的信用卡盗刷检测需要大量人力参与到分析判断上,人类审核员会打电话确认这笔交易是否涉嫌信用卡盗刷。现在,由于交易量激增,各大银行的信用卡部门开始依靠大数据,并通过机器学习和云计算的方法快速甄别涉嫌盗刷的信用卡交易。
本课题旨在探索机器学习在信用卡欺诈检测中的基本应用。运用计算机编程和数学模型构建信用卡欺诈的主要特征,并应用机器学习方法自动鉴别涉嫌盗刷的信用卡交易,最终生成实时监测信用卡欺诈的智能程序,力求获得对实践有指导意义的结论。
AI+X数据驱动型科研
AI+X数据驱动型科研是指使用人工智能(AI)算法,收集、处理、分析具体学科(X)的海量数据,并基于此进行预测,从而获得科学发现的研究方法。与传统的、基于实验或逻辑推理的研究方式相比,AI+X数据驱动型科研可以借助AI算法强大的运算能力,高效地进行大数据分析,具有投入产出比高、适用范围广的优点。
AI+X数据驱动型科研已被广泛地应用于各个领域,利用AI算法研究基因数据,从而进行早期的癌症筛查便是其中一例。基因组与癌症病患的数据千千万万,使用传统的科研方式对其进行分析,工程量大、过程繁琐,在客观上难以实现。但借助AI算法这一便捷的工具,生命科学家便能够以海量的患者的遗传信息为基础,建立数据库,与过往的研究成果进行对照,快速、准确地在两者中发现规律、建立联系,从而使癌症诊断的“标准化”成为可能。
整个科研教学流程中,每一位学员都将有学术督导协助保障研究阶段性作业和论文的进度,确保取得研究成果。
南加州大学硕士;
斯坦福大学、北京大学访问学者;
研究方法:商业分析。
本课题适合: 9-12 年级学生,有较强的逻辑思维和抽象思维能力
英文:
具备基本的学术英语阅读能力;
接触过英文写作,有论文写作经验者更佳;
数学:
概率统计基础知识
线性回归
线性代数基础(行列式、矩阵运算等)
计算机:
Python
关于南加大探究项目:基于机器学习的信用卡欺诈检测这个科研项目的介绍就到这里了,机会不等人,如果感兴趣的赶快报名参加吧。
报名/咨询课题详情
请识别下方二维码
© 2024. All Rights Reserved. 沪ICP备2023009024号-1