答案解析请参考文末
Find the sum of all positive rational numbers that are less than 10 and that have denominator 30 when written in lowest terms.
A positive integer is called ascending if, in its decimal representation, there are at least two digits and each digit is less than any digit to its right. How many ascending positive integers are there?
A tennis player computes her win ratio by dividing the number of matches she has won by the total number of matches she has played. At the start of a weekend, her win ratio is exactly . During the weekend, she plays four matches, winning three and losing one. At the end of the weekend, her win ratio is greater than . What's the largest number of matches she could've won before the weekend began?
In Pascal's Triangle, each entry is the sum of the two entries above it. In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio ?
Let be the set of all rational numbers , , that have a repeating decimal expansion in the form , where the digits , , and are not necessarily distinct. To write the elements of as fractions in lowest terms, how many different numerators are required?
For how many pairs of consecutive integers in is no carrying required when the two integers are added?
Faces and of tetrahedron meet at an angle of . The area of face is , the area of face is , and . Find the volume of the tetrahedron.
For any sequence of real numbers , define to be the sequence , whose term is . Suppose that all of the terms of the sequence are , and that . Find .
Trapezoid has sides , , , and , with parallel to . A circle with center on is drawn tangent to and . Given that , where and are relatively prime positive integers, find .
Consider the region in the complex plane that consists of all points such that both and have real and imaginary parts between and , inclusive. What is the integer that is nearest the area of ?
Lines and both pass through the origin and make first-quadrant angles of and radians, respectively, with the positive x-axis. For any line , the transformation produces another line as follows: is reflected in , and the resulting line is reflected in . Let and . Given that is the line , find the smallest positive integer for which .
In a game of Chomp, two players alternately take bites from a 5-by-7 grid of unit squares. To take a bite, a player chooses one of the remaining squares, then removes ("eats") all squares in the quadrant defined by the left edge (extended upward) and the lower edge (extended rightward) of the chosen square. For example, the bite determined by the shaded square in the diagram would remove the shaded square and the four squares marked by (The squares with two or more dotted edges have been removed from the original board in previous moves.)
The object of the game is to make one's opponent take the last bite. The diagram shows one of the many subsets of the set of 35 unit squares that can occur during the game of Chomp. How many different subsets are there in all? Include the full board and empty board in your count.
Triangle has and . What's the largest area that this triangle can have?
In triangle , , , and are on the sides , , and , respectively. Given that , , and are concurrent at the point , and that , find .
Define a positive integer to be a factorial tail if there is some positive integer such that the decimal representation of ends with exactly zeroes. How many positive integers less than are not factorial tails?
After canceling out the in the numerator and the in the denominator, we get . Setting the first equation to and the third equation to , we get a system that is solvable. We have:
Solving these equations, we get that and . Our goal is to find which row of Pascal's triangle this ratio occurs, or in other words find what n is, which we conclude to be
Thus, let
If is not divisible by or , then this is in lowest terms. Let us consider the other multiples: multiples of , of , and of and , so , which is the amount that are neither. The numbers that are multiples of reduce to multiples of . We have to count these since it will reduce to a multiple of which we have removed from , but, this cannot be removed since the numerator cannot cancel the .There aren't any numbers which are multiples of , so we can't get numerators which are multiples of . Therefore .
1. Consider that the area is just the quarter-circle with radius minus an isosceles right triangle with base length , and then doubled (to consider the entire overlapped area)
2. Consider that the circles can be converted into polar coordinates, and their equations are and . Using calculus with the appropriate bounds, we can compute the overlapped area.
Using either method, we compute the overlapped area to be , and so the area of the intersection of those three graphs is
Therefore, iff is an integral multiple of . Thus, . Since , , so the smallest positive integer is .
.
.
Then the area is .
以上解析方式仅供参考
学术活动报名扫码了解!免费领取历年真题!
© 2024. All Rights Reserved. 沪ICP备2023009024号-1