答案解析请参考文末
A chord of a circle is perpendicular to a radius at the midpoint of the radius. The ratio of the area of the larger of the two regions into which the chord divides the circle to the smaller can be expressed in the form where and are positive integers, and are relatively prime, and neither nor is divisible by the square of any prime. Find the remainder when the product is divided by 1000.
A jar has 10 red candies and 10 blue candies. Terry picks two candies at random, then Mary picks two of the remaining candies at random. Given that the probability that they get the same color combination, irrespective of order, is where and are relatively prime positive integers, find
A solid rectangular block is formed by gluing together congruent 1-cm cubes face to face. When the block is viewed so that three of its faces are visible, exactly 231 of the 1-cm cubes cannot be seen. Find the smallest possible value of
How many positive integers less than 10,000 have at most two different digits?
In order to complete a large job, 1000 workers were hired, just enough to complete the job on schedule. All the workers stayed on the job while the first quarter of the work was done, so the first quarter of the work was completed on schedule. Then 100 workers were laid off, so the second quarter of the work was completed behind schedule. Then an additional 100 workers were laid off, so the third quarter of the work was completed still further behind schedule. Given that all workers work at the same rate, what is the minimum number of additional workers, beyond the 800 workers still on the job at the end of the third quarter, that must be hired after three-quarters of the work has been completed so that the entire project can be completed on schedule or before?
Three clever monkeys divide a pile of bananas. The first monkey takes some bananas from the pile, keeps three-fourths of them, and divides the rest equally between the other two. The second monkey takes some bananas from the pile, keeps one-fourth of them, and divides the rest equally between the other two. The third monkey takes the remaining bananas from the pile, keeps one-twelfth of them, and divides the rest equally between the other two. Given that each monkey receives a whole number of bananas whenever the bananas are divided, and the numbers of bananas the first, second, and third monkeys have at the end of the process are in the ratio what is the least possible total for the number of bananas?
is a rectangular sheet of paper that has been folded so that corner is matched with point on edge The crease is where is on and is on The dimensions and are given. The perimeter of rectangle is where and are relatively prime positive integers. Find
How many positive integer divisors of are divisible by exactly 2004 positive integers?
A sequence of positive integers with and is formed so that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic progression, and, in general, for all the terms are in geometric progression, and the terms and are in arithmetic progression. Let be the greatest term in this sequence that is less than 1000. Find
Let be the set of integers between 1 and whose binary expansions have exactly two 1's. If a number is chosen at random from the probability that it is divisible by 9 is where and are relatively prime positive integers. Find
A right circular cone has a base with radius 600 and height A fly starts at a point on the surface of the cone whose distance from the vertex of the cone is 125, and crawls along the surface of the cone to a point on the exact opposite side of the cone whose distance from the vertex is Find the least distance that the fly could have crawled.
Let be an isosceles trapezoid, whose dimensions are and Draw circles of radius 3 centered at and and circles of radius 2 centered at and A circle contained within the trapezoid is tangent to all four of these circles. Its radius is where and are positive integers, is not divisible by the square of any prime, and and are relatively prime. Find
Let be a convex pentagon with and Given that the ratio between the area of triangle and the area of triangle is where and are relatively prime positive integers, find
Consider a string of 's, into which signs are inserted to produce an arithmetic expression. For example, could be obtained from eight 's in this way. For how many values of is it possible to insert signs so that the resulting expression has value ?
A long thin strip of paper is 1024 units in length, 1 unit in width, and is divided into 1024 unit squares. The paper is folded in half repeatedly. For the first fold, the right end of the paper is folded over to coincide with and lie on top of the left end. The result is a 512 by 1 strip of double thickness. Next, the right end of this strip is folded over to coincide with and lie on top of the left end, resulting in a 256 by 1 strip of quadruple thickness. This process is repeated 8 more times. After the last fold, the strip has become a stack of 1024 unit squares. How many of these squares lie below the square that was originally the 942nd square counting from the left?
We then let the number of workers needed be , so we have the equation . Dividing by the first equation, we have
We can't have a part of a worker, so we take the ceiling of , which we find to be .
Monkey 3:
So, they are in a ratio . But, we can turn it into an equation by multiplying the amount of bananas each monkey has by 2, 3, 6. Now, the ratio is , so, . Subtracting from all, we get . Let's split this into 3 equations.
Let's look at the first equation. Rearranging, it gets us
We can rearrange the third equation, then divide by 2, then subtract the second equation..
It is clear is a multiple of 9, so let . Then we get the , and . Testing, we confirm this will get the first monkey 204 bananas, the second 136, and the third, 68. Adding them up, we get that there were bananas originally in the pile.
Let , so and , and let be the length of the rectangle. The slope of is and so the equation of is . We know that is perpendicular to and bisects . The slope of is thus , and so the equation of is . Let the point of intersection of be . Then the y-coordinate of is , soDividing the two equations yields
Firstly, observe that if we are given that and , the length of the triangle is given and the height depends solely on the length of . Let Point . Since , point E is at (8,0). Next, point is at since and point is at since by symmetry. Draw line segment . Notice that this is perpendicular to by symmetry. Next, find the slope of EB, which is . Then, the slope of is -.
Line EF can be written as y=. Plug in the point , and we get the equation of EF to be y=. Since the length of =25, a point on line lies on when . Plug in into our equation to get . . Therefore, our answer is .
Firstly, note that , so . Then let , so . Then , or
using supplementary and double angle identities. Multiplying though and factoring yields
It is clear from the problem setup that , so the correct value is . Next, extend rays and to intersect at . Then , so . By similar triangles, , so . The perimeter is
An even faster way to finish is, to draw a line segment where is a point on such that is perpendicular to . This makes right triangle , Also, note that has length of (draw the diagram out, and note the ). From here, through , we can note that . is parallel and congrurent to and , and hence we can use this to calculate the perimeter. The perimeter is simply
We can easily calculate from a diagram. Plugging back in,
More brute force / thinking about the question logically. We can find the number of squares above the number instead. If the number doesn't change position, then we add the number of squares we just folded. Otherwise, we just take the number of squares under it before we folded and now these are above the number.
First its in position with spaces over it. We flip once, since is to the right it gets flipped onto itself, going from position to . Now its in position 83, still has spaces over it.
Flip again, it's still in position 83 but now, since it didn't move position, we add the thickness of the fold we just flipped, which is 2. So now there are spaces over it.
Flip again, its to the left of the fold again, so we add squares to get .
Flip again, it goes from in position, and there was square below our number before we flipped, so now that one number is above it.
Flip again, it goes , and now there were squares below it so now they are above it.
Flip again, it goes , and there were squares below it and now they are above it.
Flip again, it goes and there were squares below it and now they are above it.
Flip again, it stays in position, so we add to get .
Flip again, it goes , and there were squares below it and now they are above it.
Flip again, it goes , and there were squares below it and now they are above it.
Since the question asks for how many squares were below our number, our answer is .
We can keep track of the position of the square labeled 942 in each step. We use an coordinate system, so originally the 942 square is in the position . In general, suppose that we've folded the strip into an array squares wide and squares tall (so we've made folds). Then if a square occupies the location , we find that after the next fold, it will be in the location described by the procedureTherefore, we can keep track of the square's location in the following table.Therefore, at the end of the process, the square labeled 942 will be in the position , i.e., it will be above squares.
以上解析方式仅供参考
学术活动报名扫码了解!免费领取历年真题!
© 2024. All Rights Reserved. 沪ICP备2023009024号-1