真题及解析
Two is of and of . What is ?
The equations and have the same solution. What is the value of ?
A rectangle with diagonal length is twice as long as it is wide. What is the area of the rectangle?
A store normally sells windows at each. This week the store is offering one free window for each purchase of four. Dave needs seven windows and Doug needs eight windows. How much will they save if they purchase the windows together rather than separately?
The average (mean) of 20 numbers is 30, and the average of 30 other numbers is 20. What is the average of all 50 numbers?
Josh and Mike live 13 miles apart. Yesterday, Josh started to ride his bicycle toward Mike's house. A little later Mike started to ride his bicycle toward Josh's house. When they met, Josh had ridden for twice the length of time as Mike and at four-fifths of Mike's rate. How many miles had Mike ridden when they met?
Square is inside the square so that each side of can be extended to pass through a vertex of . Square has side length and . What is the area of the inner square ?
Let , and be digits with
What is ?
There are two values of for which the equation has only one solution for . What is the sum of these values of ?
A wooden cube units on a side is painted red on all six faces and then cut into unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is ?
How many three-digit numbers satisfy the property that the middle digit is the average of the first and the last digits?
A line passes through and . How many other points with integer coordinates are on the line and strictly between and ?
In the five-sided star shown, the letters , , , and are replaced by the numbers 3, 5, 6, 7 and 9, although not necessarily in that order. The sums of the numbers at the ends of the line segments , , , , and form an arithmetic sequence, although not necessarily in that order. What is the middle term of the arithmetic sequence?
On a standard die one of the dots is removed at random with each dot equally likely to be chosen. The die is then rolled. What is the probability that the top face has an odd number of dots?
Let be a diameter of a circle and be a point on with . Let and be points on the circle such that and is a second diameter. What is the ratio of the area of to the area of ?
Three circles of radius are drawn in the first quadrant of the -plane. The first circle is tangent to both axes, the second is tangent to the first circle and the -axis, and the third is tangent to the first circle and the -axis. A circle of radius is tangent to both axes and to the second and third circles. What is ?
A unit cube is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex ?
Call a number "prime-looking" if it is composite but not divisible by 2, 3, or 5. The three smallest prime-looking numbers are 49, 77, and 91. There are 168 prime numbers less than 1000. How many prime-looking numbers are there less than 1000?
A faulty car odometer proceeds from digit 3 to digit 5, always skipping the digit 4, regardless of position. If the odometer now reads 002005, how many miles has the car actually traveled?
For each in , define
Let , and for each integer . For how many values of in is ?
How many ordered triples of integers , with , , and , satisfy both and ?
A rectangular box is inscribed in a sphere of radius . The surface area of is 384, and the sum of the lengths of its 12 edges is 112. What is ?
Two distinct numbers and are chosen randomly from the set . What is the probability that is an integer?
Let . For how many polynomials does there exist a polynomial of degree 3 such that ?
Let be the set of all points with coordinates , where and are each chosen from the set . How many equilateral triangles have all their vertices in ?
A quadratic equation always has two roots, unless it has a double root. That means we can write the quadratic as a square, and the coefficients 4 and 9 suggest this. Completing the square, , so . The sum of these is .
Another method would be to use the quadratic formula, since our coefficient is given as 4, the coefficient is and the constant term is . Hence, Because we want only a single solution for , the determinant must equal 0. Therefore, we can write which factors to ; using Vieta's formulas we see that the sum of the solutions for is the opposite of the coefficient of , or .
Using the discriminant, the result must equal . Therefore, or , giving a sum of .
Let the digits be so that . In order for this to be an integer, and have to have the same parity. There are possibilities for , and for . depends on the value of both and and is unique for each . Thus our answer is .
Thus, the three digits form an arithmetic sequence.
Common difference | Sequences possible | Number of sequences |
1 | 8 | |
2 | 6 | |
3 | 4 | |
4 | 2 |
This gives us . However, the question asks for three-digit numbers, so we have to ignore the four sequences starting with . Thus our answer is .
Let the terms in the arithmetic sequence be , , , , and . We seek the middle term .
These five terms are , , , , and , in some order. The numbers , , , , and are equal to 3, 5, 6, 7, and 9, in some order, soHence, the sum of the five terms isBut adding all five numbers, we also get , soDividing both sides by 5, we get , which is the middle term. The answer is (D).
Thus the answer is .
Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or ( is the foot of the perpendicular from to ).
Call the radius . Then , . Using the Pythagorean Theorem in , we get .
Now we have to find . Notice , so we can write the proportion:
By the Pythagorean Theorem in , we have .
Our answer is .
Let the center of the circle be .
Note that .
is midpoint of .
is midpoint of Area of Area of Area of Area of .
Let be the radius of the circle. Note that so .
By Power of a Point Theorem, , and thus
Then the area of is . Similarly, the area of is , so the desired ratio is
Let the center of the circle be . Without loss of generality, let the radius of the circle be equal to . Thus, and . As a consequence of , and . Also, we know that and are both equal to due to the fact that they are both radii. Thus from the Pythagorean Theorem, we have DC being equal to or . Now we know that the area of is equal to or . Know we need to find the area of . By simple inspection due to angles being equal and CPCTC. Thus and . Know we know the area of or . We also know that the area of or . Thus the area of or . We also can calculate the area of to be or . Thus is equal to + or or . The ratio between and is equal to or .
We will use the shoelace formula. Our origin is the center of the circle. Denote the ordered pair for , and notice how is a 180 degree rotation of , using the rotation matrix formula we get . WLOG say that this circle has radius . We can now find points , , and which are , , and respectively. By shoelace the area of is , and the area of is . Using division we get that the answer is .
We set point as a mass of 2. This means that point has a mass of since . This implies that point has a mass of and the center of the circle has a mass of . After this, we notice that points and both must have a mass of since and they are both radii of the circle.
To find the ratio of the areas, we do the reciprocal of the multiplication of the mass points of DCE and the multiplication of ABD divided by each other. Which is simply which is (the reciprocal of 3)
Quite obviously , so and .
Substituting, we find that our answer is .
We find the number of numbers with a and subtract from . Quick counting tells us that there are numbers with a 4 in the hundreds place, numbers with a 4 in the tens place, and numbers with a 4 in the units place (counting ). Now we apply the Principle of Inclusion-Exclusion. There are numbers with a 4 in the hundreds and in the tens, and for both the other two intersections. The intersection of all three sets is just . So we get:
Alternatively, consider that counting without the number is almost equivalent to counting in base ; only, in base , the number is not counted. Since is skipped, the symbol represents miles of travel, and we have traveled miles. By basic conversion,
For the two functions and ,as long as is between and , will be in the right domain, so we don't need to worry about the domain of .
Also, every time we change , the expression for the final answer in terms of will be in a different form(although they'll all satisfy the final equation), so we get a different starting value of . Every time we have two choices for ) and altogether we have to choose times. Thus, .
Note: the values of x that satisfy are , , , ,.
We are given that . Thus, . Let be equal to . Thus or or . Now we know is equal to or . Now we know that or . Now we solve for and let . Thus is equal to ,,,and . As we see, has 1 solution, has 2 solutions, and has 4 solutions. Thus for each iteration we double the number of possible solutions. There are 2005 iterations and thus the number of solutions is
.
Since and , . Thus, , so .
Hence, we conclude , , and must each be , , or . Since a quadratic is uniquely determined by three points, there can be different quadratics after each of the values of , , and are chosen.
However, we have included which are not quadratics: lines. Namely,
Clearly, we could not have included any other constant functions. For any linear function, we have because is y-value of the midpoint of and . So we have not included any other linear functions. Therefore, the desired answer is .
For this solution, we will just find as many solutions as possible, until it becomes intuitive that there are no more size of triangles left.
First, try to make three of its vertices form an equilateral triangle. This we find is possible by taking any vertex, and connecting the three adjacent vertices into a triangle. This triangle will have a side length of ; a quick further examination of this cube will show us that this is the only possible side length (red triangle in diagram). Each of these triangles is determined by one vertex of the cube, so in one cube we have 8 equilateral triangles. We have 8 unit cubes, and then the entire cube (green triangle), giving us 9 cubes and equilateral triangles.
Now, we look for any additional equilateral triangles. Connecting the midpoints of three non-adjacent, non-parallel edges also gives us more equilateral triangles (blue triangle). Notice that picking these three edges leaves two vertices alone (labelled A and B), and that picking any two opposite vertices determine two equilateral triangles. Hence there are of these equilateral triangles, for a total of .
The three-dimensional distance formula shows that the lengths of the equilateral triangle must be , which yields the possible edge lengths of
以上解析方式仅供参考
学术活动报名扫码了解!免费领取历年真题!
© 2024. All Rights Reserved. 沪ICP备2023009024号-1