答案详细解析请参考文末
The arithmetic mean of the nine numbers in the set is a -digit number , all of whose digits are distinct. The number does not contain the digit
What is the value of
when ?
For how many positive integers is a prime number?
Let be a positive integer such that is an integer. Which of the following statements is not true:
Let and be the degree measures of the five angles of a pentagon. Suppose that and and form an arithmetic sequence. Find the value of .
Suppose that and are nonzero real numbers, and that the equation has solutions and . Then the pair is
The product of three consecutive positive integers is times their sum. What is the sum of their squares?
Suppose July of year has five Mondays. Which of the following must occur five times in August of year ? (Note: Both months have 31 days.)
If are positive real numbers such that form an increasing arithmetic sequence and form a geometric sequence, then is
How many different integers can be expressed as the sum of three distinct members of the set ?
The positive integers and are all prime numbers. The sum of these four primes is
For how many integers is the square of an integer?
The sum of consecutive positive integers is a perfect square. The smallest possible value of this sum is
Four distinct circles are drawn in a plane. What is the maximum number of points where at least two of the circles intersect?
How many four-digit numbers have the property that the three-digit number obtained by removing the leftmost digit is one ninth of ?
Juan rolls a fair regular octahedral die marked with the numbers through . Then Amal rolls a fair six-sided die. What is the probability that the product of the two rolls is a multiple of 3?
Andy’s lawn has twice as much area as Beth’s lawn and three times as much area as Carlos’ lawn. Carlos’ lawn mower cuts half as fast as Beth’s mower and one third as fast as Andy’s mower. If they all start to mow their lawns at the same time, who will finish first?
A point is randomly selected from the rectangular region with vertices . What is the probability that is closer to the origin than it is to the point ?
If and are positive real numbers such that and , then is
Let be a right-angled triangle with . Let and be the midpoints of legs and , respectively. Given that and , find .
For all positive integers less than , let
Calculate .
For all integers greater than , define . Let and . Then equals
In , we have and . Side and the median from to have the same length. What is ?
A convex quadrilateral with area contains a point in its interior such that . Find the perimeter of .
Let , and let denote the set of points in the coordinate plane such thatThe area of is closest to
Factoring, we get . Either or is odd, and the other is even. Their product must yield an even number. The only prime that is even is , which is when is . The answer is .
Considering parity, we see that is always even. The only even prime is , and so whence .
The sum of the degree measures of the angles of a pentagon (as a pentagon can be split into triangles) is . If we let , it follows that
Note that since is the middle term of an arithmetic sequence with an odd number of terms, it is simply the average of the sequence.
You can always assume the values are the same so
Let , , , , be , , , , , respectively. Then we haveDividing the equation by , we have
Since , it follows by comparing coefficients that and that . Since is nonzero, , and . Thus .
Another method is to use Vieta's formulas. The sum of the solutions to this polynomial is equal to the opposite of the coefficient, since the leading coefficient is 1; in other words, and the product of the solutions is equal to the constant term (i.e, ). Since is nonzero, it follows that and therefore (from the first equation), . Hence,
Note that for roots and , . This implies that is , and there is only one answer choice with in the position for , hence,
We can let , , , and .
As is a geometric sequence, let and for some .
Now, is an arithmetic sequence. Its difference is . Thus .
Comparing the two expressions for we get . The positive solution is , and .
Letting be the common difference of the arithmetic progression, we have , , . We are given that = , orCross-multiplying, we getSo .
Subtracting 10 from each number in the set, and dividing the results by 3, we obtain the set . It is easy to see that we can get any integer between and inclusive as the sum of three elements from this set, for the total of integers.
The set is an arithmetic sequence of numbers each more than a multiple of . Thus the sum of any three numbers will be a multiple of . All the multiples of from to are possible, totaling to integers.
Since and must have the same parity, and since there is only one even prime number, it follows that and are both odd. Thus one of is odd and the other even. Since , it follows that (as a prime greater than ) is odd. Thus , and are consecutive odd primes. At least one of is divisible by , from which it follows that and . The sum of these numbers is thus , a prime, so the answer is .
In order for both and to be prime, one of must be 2, or else both , would be even numbers.
If , then and , which is not possible. Thus .
Since is prime and , we can infer that and thus can be expressed as for some natural number .
However in either case, one of and can be expressed as which is a multiple of 3. Therefore the only possibility that works is when and
Which is a prime number.
Let , with (note that the solutions do not give any additional solutions for ). Then rewriting, . Since , it follows that divides . Listing the factors of , we find that are the only solutions (respectively yielding ).
For and the fraction is negative, for it is not defined, and for it is between 0 and 1.
Thus we only need to examine and .
For and we obviously get the squares and respectively.
For prime the fraction will not be an integer, as the denominator will not contain the prime in the numerator.
This leaves , and a quick substitution shows that out of these only and yield a square. Therefore, there are only solutions (respectively yielding ).
If , then and , otherwise will be negative. Thus andChecking all for which , we have , , , as the possibilities.
Let be the consecutive positive integers. Their sum, , is a perfect square. Since is a perfect square, it follows that is a perfect square. The smallest possible such perfect square is when , and the sum is .
Notice that all five choices given are perfect squares.
Let be the smallest number, we have
Subtract from each of the choices and then check its divisibility by , we have as the smallest possible sum.
For any given pair of circles, they can intersect at most times. Since there are pairs of circles, the maximum number of possible intersections is . We can construct such a situation as below, so the answer is .
Because a pair or circles can intersect at most times, the first circle can intersect the second at points, the third can intersect the first two at points, and the fourth can intersect the first three at points. This means that our answer is
Pick a circle any circle- ways. Then, pick any other circle- ways. For each of these circles, there will be intersections for a total of = intersections. However, we have counted each intersection twice, so we divide for overcounting. Therefore, we reach a total of , which corresponds to .
Let , such that . Then . Since , from we have three-digit solutions, and the answer is .
Since N is a four digit number, assume WLOG that , where a is the thousands digit, b is the hundreds digit, c is the tens digit, and d is the ones digit. Then, , so Set these equal to each other:Notice that , thus:
Go back to our first equation, in which we set , Then:The upper limit for the right hand side (RHS) is (when , , and ). It's easy to prove that for an there is only one combination of and that can make the equation equal. Just think about the RHS as a three digit number . There's one and only one way to create every three digit number with a certain combination of digits. Thus, we test for how many as are in the domain set by the RHS. Since which is the largest value, then can be through , giving us the answer of
On both dice, only the faces with the numbers are divisible by . Let be the probability that Juan rolls a or a , and that Amal does. By the Principle of Inclusion-Exclusion,
Alternatively, the probability that Juan rolls a multiple of is , and the probability that Juan does not roll a multiple of but Amal does is . Thus the total probability is .
The probability that neither Juan nor Amal rolls a multiple of is ; using complementary counting, the probability that at least one does is .
The region containing the points closer to than to is bounded by the perpendicular bisector of the segment with endpoints . The perpendicular bisector passes through midpoint of , which is , the center of the unit square with coordinates . Thus, it cuts the unit square into two equal halves of area . The total area of the rectangle is , so the area closer to the origin than to and in the rectangle is . The probability is .
Assume that the point is randomly chosen within the rectangle with vertices , , , . In this case, the region for to be closer to the origin than to point occupies exactly of the area of the rectangle, or square units.
If is chosen within the square with vertices , , , which has area square unit, it is for sure closer to .
Now if can only be chosen within the rectangle with vertices , , , , then the square region is removed and the area for to be closer to is then decreased by square unit, left with only square unit.
Thus the probability that is closer to is and that of is closer to the origin is .
Let be the foot of the altitude from to extended past . Let and . Using the Pythagorean Theorem, we obtain the equations
Subtracting equation from and , we get
Then, subtracting from and rearranging, we get , so
Let be the foot of the median from to , and we let . Then by the Law of Cosines on , we have
Since , we can add these two equations and get
Hence and .
From Stewart's Theorem, we have Simplifying, we get
Each of those lines passes through and has slope , as shown above. Therefore, the area of is half of the area of the circle, which is .
学术活动报名扫码了解!免费领取历年真题!
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1