答案解析请参考文末
A basketball player made 5 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
A block of calendar dates has the numbers through in the first row, though in the second, though in the third, and through in the fourth. The order of the numbers in the second and the fourth rows are reversed. The numbers on each diagonal are added. What will be the positive difference between the diagonal sums?
Assume that is a positive real number. Which is equivalent to ?
A semipro baseball league has teams with players each. League rules state that a player must be paid at least and that the total of all players' salaries for each team cannot exceed What is the maximum possible salary, in dollars, for a single player?
For real numbers and , define . What is ?
Points and lie on . The length of is times the length of , and the length of is times the length of . The length of is what fraction of the length of ?
An equilateral triangle of side length is completely filled in by non-overlapping equilateral triangles of side length . How many small triangles are required?
A class collects to buy flowers for a classmate who is in the hospital. Roses cost each, and carnations cost each. No other flowers are to be used. How many different bouquets could be purchased for exactly ?
A quadratic equation has two real solutions. What is the average of these two solutions?
Points and are on a circle of radius and . Point is the midpoint of the minor arc . What is the length of the line segment ?
Suppose that is a sequence of real numbers satisfying ,
and that and . What is ?
Postman Pete has a pedometer to count his steps. The pedometer records up to 99999 steps, then flips over to 00000 on the next step. Pete plans to determine his mileage for a year. On January 1 Pete sets the pedometer to 00000. During the year, the pedometer flips from 99999 to 00000 forty-four times. On December 31 the pedometer reads 50000. Pete takes 1800 steps per mile. Which of the following is closest to the number of miles Pete walked during the year?
For each positive integer , the mean of the first terms of a sequence is . What is the 2008th term of the sequence?
Triangle has , , and in the first quadrant. In addition, and . Suppose that is rotated counterclockwise about . What are the coordinates of the image of ?
How many right triangles have integer leg lengths and and a hypotenuse of length , where ?
Two fair coins are to be tossed once. For each head that results, one fair die is to be rolled. What is the probability that the sum of the die rolls is odd? (Note that if no die is rolled, the sum is .)
A poll shows that of all voters approve of the mayor's work. On three separate occasions a pollster selects a voter at random. What is the probability that on exactly one of these three occasions the voter approves of the mayor's work?
Bricklayer Brenda would take nine hours to build a chimney alone, and Bricklayer Brandon would take hours to build it alone. When they work together, they talk a lot, and their combined output decreases by bricks per hour. Working together, they build the chimney in hours. How many bricks are in the chimney?
A cylindrical tank with radius feet and height feet is lying on its side. The tank is filled with water to a depth of feet. What is the volume of water, in cubic feet?
The faces of a cubical die are marked with the numbers , , , , , and . The faces of another die are marked with the numbers , , , , , and . What is the probability that the sum of the top two numbers will be , , or ?
Ten chairs are evenly spaced around a round table and numbered clockwise from through . Five married couples are to sit in the chairs with men and women alternating, and no one is to sit either next to or across from his/her spouse. How many seating arrangements are possible?
Three red beads, two white beads, and one blue bead are placed in line in random order. What is the probability that no two neighboring beads are the same color?
A rectangular floor measures by feet, where and are positive integers with . An artist paints a rectangle on the floor with the sides of the rectangle parallel to the sides of the floor. The unpainted part of the floor forms a border of width 1 foot around the painted rectangle and occupies half of the area of the entire floor. How many possibilities are there for the ordered pair ?
Quadrilateral has , angle and angle . What is the measure of angle ?
Michael walks at the rate of feet per second on a long straight path. Trash pails are located every feet along the path. A garbage truck travels at feet per second in the same direction as Michael and stops for seconds at each pail. As Michael passes a pail, he notices the truck ahead of him just leaving the next pail. How many times will Michael and the truck meet?
Substituting into the previous equation, we get , hence .
This means that the coordinates of are .
After we rotate counterclockwise about , it will get into the second quadrant and have the coordinates . So the answer is .
1 3 4 5 6 8 ------------------ 1 | 2 4 5 6 7 9 2 | 3 5 6 7 8 10 2 | 3 5 6 7 8 10 3 | 4 6 7 8 9 11 3 | 4 6 7 8 9 11 4 | 5 7 8 9 10 12
We see that out of possible outcomes give the sum of , the sum of , and the sum of , hence the resulting probability is .
Each die is equally likely to roll odd or even, so the probability of an odd sum is .
So we can find the probability of rolling or instead and just subtract that from , which seems easier. Without writing out a table, we can see that there are two ways to make , and two ways to make , for a probability of .
.
In the cases one and two, the white balls must go in the blank surrounded on either side by the red balls. Like this: However, now with only one white ball and one blue ball left, there are two ways to order them in both cases. So for a total of possibilities.
In the last two cases, the two white balls and the blue ball can go anywhere, in those three blanks, becuase they are separated by a red ball. So there are ways for each case. This adds up to a total of possibilities for the last two cases.
Adding them up, we get total orderings.
There are total orderings.
So the answer is .
There are 3 cases:
There is a block of RWRWR. The B can go in any slot between two letters. 6 ways.
There is a RBR. Then, there is a WRW, and there are 2 orderings.
There is a WBW. Then, there is a RWR, and there are 2 orderings.
There are 60 ways total, and 10 valid ones, giving as the answer.
Start off with the same diagram as solution 1. Now draw which creates isosceles . We know that the angle bisector of an isosceles triangle splits it in half, we can extrapolate this further to see that it's is
以上解析方式仅供参考
学术活动报名扫码了解!免费领取历年真题!
© 2024. All Rights Reserved. 沪ICP备2023009024号-1