美国大学生数学建模学术活动(含交叉学科学术活动)是由美国自然科学基金协会和美国数学与数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家国际机构协办的唯一一项国际性建模学术活动。学术活动要求3个以下本科未毕业学生在4天时间内用数学建模及其他知识解决一个具体的社会工程问题,用英语提交论文。具体组织模式见网站。
学术活动参考书
l、中国大学生数学建模学术活动,李大潜主编,高等教育出版社(1998).
2、大学生数学建模学术活动辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998).
3、数学建模教育与国际数学建模学术活动 《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").
2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).
3、数学模型选谈(走向数学丛书),华罗庚,王元著,王克译,湖南教育出版社;(1991).
4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).
5、数学模型,濮定国、田蔚文主编,东南大学出版社(1994).
6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)
7、数学模型,陈义华编著,重庆大学出版社,(1995)
8、数学模型建模分析,蔡常丰编著,科学出版社,(1995).
9、数学建模学术活动教程,李尚志主编,江苏教育出版社,(1996).
10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).
11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).
12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).
13、数学模型方法,齐欢编著,华中理工大学出版社,(1996).
14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996).
15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版社(1997).
16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社.
17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).
18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).
19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).
20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编著,华南理工大学出版社,(1999).
21、数学模型讲义,雷功炎编,北京大学出版社(1999).
22、数学建模精品案例,朱道元编著,东南大学出版社,(1999),
23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).
24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999).
25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).
26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).
27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).
28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
29、姜启源,谢金星,叶俊,数学模型(第三版),北京:高等教育出版社,2003
30、韩中庚,数学建模方法及其应用,北京:高等教育出版社,2005
国外参考书(中译本)
1、数学模型引论,E.A。Bender著,朱尧辰、徐伟宣译,科学普及出版社(1982).
2、数学模型,[门]近藤次郎著,官荣章等译,机械工业出版社,(1985).
3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等译,国防科技大学出版社,(1988).
4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋等译,国防科技大学出版社,(1996).
5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智等译,国防科技大学出版社,(1996).
6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等译,国防科技大学出版社,(1996).
7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow著,萧礼、张志军编译,科学出版社,(1996).
8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等著,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
1、水环境数学模型,[德]W.KinZE1bach著,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987).
2、科技工程中的数学模型,堪安琦编著,铁道出版社(1988)
3、生物医学数学模型,青义学编著,湖南科学技术出版社(1990).
4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990).
5、系统科学中数学模型,欧阳亮编著,山东大学出版社,(1995).
6、种群生态学的数学建模与研究,马知恩著,安徽教育出版社,(1996)
7、建模、变换、优化结构综合方法新进展,隋允康著,大连理工大学出版社, (1986)
8、遗传模型分析方法,朱军著,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
题目
1992年
(A) 施肥效果分析问题(北京理工大学:叶其孝)
(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)
1993年
(A) 非线性交调的频率设计问题(北京大学:谢衷洁)
(B) 足球排名次问题(清华大学:蔡大用)
1994年
(A) 逢山开路问题(西安电子科技大学:何大可)
(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)
1995年
(A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)
1996年
(A) 最优捕鱼策略问题(北京师范大学:刘来福)
(B) 节水洗衣机问题(重庆大学:付鹂)
1997年
(A) 零件参数设计问题(清华大学:姜启源)
(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)
1998年
(A) 投资的收益和风险问题(浙江大学:陈淑平)
(B) 灾情巡视路线问题(上海海运学院:丁颂康)
1999年
(A) 自动化车床管理问题(北京大学:孙山泽)
(B) 钻井布局问题(郑州大学:林诒勋)
(C) 煤矸石堆积问题(太原理工大学:贾晓峰)
(D) 钻井布局问题(郑州大学:林诒勋)
2000年
(A) DNA序列分类问题(北京工业大学:孟大志)
(B) 钢管订购和运输问题(武汉大学:费甫生)
(C) 飞越北极问题(复旦大学:谭永基)
(D) 空洞探测问题(东北电力学院:关信)
2001年
(A) 血管的三维重建问题(浙江大学:汪国昭)
(B) 公交车调度问题(清华大学:谭泽光)
(C) 基金使用计划问题(东南大学:陈恩水)
(D) 公交车调度问题(清华大学:谭泽光)
2002年
(A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)
(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(D) 赛程安排问题(清华大学:姜启源)
2003年
(A) SARS的传播问题(组委会)
(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)
(C) SARS的传播问题(组委会)
(D) 抢渡长江问题(华中农业大学:殷建肃)
2004年
(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)
(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)
(C) 酒后开车问题(清华大学:姜启源)
(D) 招聘公务员问题(解放军信息工程大学:韩中庚)
2005年
(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)
(B) DVD在线租赁问题(清华大学:谢金星等)
(C) 雨量预报方法的评价问题(复旦大学:谭永基)
(D) DVD在线租赁问题(清华大学:谢金星等)
2006年
(A) 出版社的资源配置问题(北京工业大学:孟大志)
(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)
(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)
(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)
2007年
(A) 中国人口增长预测
(B) 乘公交,看奥运
(C) 手机“套餐”优惠几何
(D) 体能测试时间安排
意义
1、培养创新意识和创造能力
2、训练快速获取信息和资料的能力
3、锻炼快速了解和掌握新知识的技能
4、培养团队合作意识和团队合作精神
5、增强写作技能和排版技术
6、荣获国家级奖励有利于保送研究生
7、荣获国际级奖励有利于申请出国留学
8、更重要的是训练人的逻辑思维和开放性思考方式
经验
以下是数学建模爱好者的经验和体会,与大家共享。尊敬的老师,亲爱的同学们:大家上午好!我是来自江苏赛区的中国矿业大学的魏永生.
首先,我十分感谢组委会给我这个机会,让我在闭幕式上与来自全国各地的数学建模代表队交流此次参加夏令的心得体会.
从今年五月底,我就和队友三个人一起从全国组委会网站下载了夏令营赛题.从查阅论文资料,请教铁路交通运输专业的老师,到赛题的建模,求解和论文写作,历时近一个月. 在做题的过程中,我们到网上搜索了赛题所需要的数据源.当我们碰到不懂的专业问题时,就去拜访和咨询专业老师,或者到图书馆查阅相关书籍资料和研究论文;当我们有一项连续性的工作未能完成时,为了不打断思路,曾经没能在一天吃上三餐.为了能够尽快地完成研究论文,我和队友们曾通宵达旦地做,甚至在夜里被惊醒还继续做题.
总之,不管遇到什么困难,我们都会一起去克服,再多再大的苦难也阻挡不了我们对数学建模的热情和喜爱,我们对她已经爱不释手!
一次参赛,终身受益,这是数学建模的真谛所在!数学建模的魅力实在无穷,让我不甘心只参加一次,从大学开始,我几乎每年都参加国际,全国,地区和学校的各个级别的比赛,可以说是久经沙场的老将了!我最终获得了美国赛的一等奖.
这次夏令营是一次半学术活动半交流性质的数学建模活动.在答辩之前,我们每个队是在自己的赛区通过学术活动或竞争的方式争取到赴京参加夏令营的机会;而在北京化工大学,我们每个队又是通过答辩,交流和讨论的方式进行,这让我们看到了自己论文的优缺点.有些队模型建立得很完善,有些模型求解得很巧妙,结果比较精确,也有些队论文比较出色."三人行必有我师"在这次夏令营活动中体现得淋漓尽致!这是数学建模高手云集的时候,我能做的只有把自己的优点发挥出来,同时吸取众高手的优点来完善自己.
数学建模带给了我们什么 是过去荣获的种种荣誉吗 答案是否定的.数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段.特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了"我们",培养了"三人同心,其利断金"的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。
进展
数学建模的应用,对于数学建模学术活动来说是非常大的促进和动力。目前,国内首家数学建模公司——北京诺亚数学建模科技有限公司在北京成立。已读博士的魏永生和另外两个志同道合的同学一起合作的创业项目,源于他们熟悉的数学建模领域。魏永生三人在2003年4月组建了一个大学生数学建模学术活动团队,当年就获得了国家二等奖,2005年荣获了国际数学建模学术活动的一等奖,同年10月注册了数学建模爱好者网站,本着数学建模走向社会,走向应用的方向,他们在去年6月正式确立了以数学建模应用为创业方向,组建了创业团队,开启了创业之路。本月初,北京诺亚数学建模科技有限公司正式注册,魏永生团队的创业正式走向正轨。
目前,诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其他相关领域的数学建模及数学模型解决方案 、咨询服务。
魏永生向记者解释说,也许很多人并不了解数学建模究竟有什么用途,他举了个例子,一个火车站,要计算隔多久发一辆车才能既保证把旅客都带走,又能最大程度的节约成本,这些通过数学建模都能算出最优方案。
魏永生介绍说,他们的数学建模团队已有6年的历史,彼此配合很默契,也做了数十个大大小小的项目。他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。
算法
1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)
2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)
3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模学术活动大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)
4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到学术活动中)
6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多学术活动题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)
9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)
10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
数据
数学建模涉及大量数据集,供相关研究人员用于测试并论证数学建模算法,例如:
1. 2008全国研究生数学建模学术活动试题及数据
2. 2011高教社杯全国大学生数学建模学术活动题目
3. 可进行密度建模训练的iris数据集
4. Applied Bayesian Modelling Dataset(应用贝叶斯建模数据集)
5. Worksheets Data for Multilevel modelling(多层次建模的工作表格式数据)等。
© 2024. All Rights Reserved. 沪ICP备2023009024号-1