原题下载
答案
(Analysis by Nick Wu)
Let's define f(n,k)f(n,k) to be the smallest distance needed to end up at point nn having skipped exactly kk points.
Given that we are at a specific point, if we knew that we wanted to skip xx points, then we would want to know f(n−x−1,k−x)f(n−x−1,k−x). However, we don't know what the optimal number is. We can try all possible numbers of points to skip - this gives us an O(nk2)O(nk2) algorithm.
Here is my Java solution, which computes all f(n,k)f(n,k) values in a bottom-up fashion.
import java.io.*; import java.util.*; public class marathonS { static int[] x, y; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new FileReader("marathon.in")); PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("marathon.out"))); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); x = new int[n]; y = new int[n]; for(int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); x[i] = Integer.parseInt(st.nextToken()); y[i] = Integer.parseInt(st.nextToken()); } int[][] dp = new int[k+1][n]; for(int i = 0; i < dp.length; i++) { Arrays.fill(dp[i], 1 << 30); } dp[0][0] = 0; for(int i = 0; i <= k; i++) { for(int j = 0; j < n; j++) { for(int l = j+1; l < n && i + l-j-1 <= k; l++) { int nextI = i + (l-j-1); int nextJ = l; dp[nextI][nextJ] = Math.min(dp[nextI][nextJ], dp[i][j] + distBetween(j, l)); } } } pw.println(dp[k][n-1]); pw.close(); } public static int distBetween(int i, int j) { return dist(x[i], y[i], x[j], y[j]); } public static int dist(int x1, int y1, int x2, int y2) { int x = x1-x2; int y = y1-y2; return Math.abs(x) + Math.abs(y); } }
© 2024. All Rights Reserved. 沪ICP备2023009024号-1