完整版真题免费下载
+答案解析请参考文末
Find, with proof, all positive integers for which is a perfect square.
Let , , be positive real numbers such that . Prove that
For a point in the coordinate plane, let denote the line passing through with slope . Consider the set of triangles with vertices of the form , , , such that the intersections of the lines , , form an equilateral triangle . Find the locus of the center of as ranges over all such triangles.
A word is defined as any finite string of letters. A word is a palindrome if it reads the same backwards as forwards. Let a sequence of words , , , be defined as follows: , , and for , is the word formed by writing followed by . Prove that for any , the word formed by writing , , , in succession is a palindrome.
Points , , , , lie on a circle and point lies outside the circle. The given points are such that (i) lines and are tangent to , (ii) , , are collinear, and (iii) . Prove that bisects .
Consider the assertion that for each positive integer , the remainder upon dividing by is a power of 4. Either prove the assertion or find (with proof) a counterexample.
Let . Then . Since all perfect squares are congruent to 0 or 1 modulo 3, this means that n must be odd. Proof by Contradiction: We wish to show that the only value of that satisfies is . Assume that . Then consider the equation . From modulo 2, we easily know x is odd. Let , where a is an integer.. Dividing by 4, . Since , , so similarly, the entire LHS is an integer, and so are and . Thus, must be an integer. Let . Then we have . . . Thus, n is even. However, it has already been shown that must be odd. This is a contradiction. Therefore, is not greater than or equal to 2, and must hence be less than 2. The only positive integer less than 2 is 1.
If , then , a perfect square.
If is odd, then .
Since all perfect squares are congruent to , we have that is not a perfect square for odd .
If is even, then .
Since , we have that is not a perfect square for even .
Thus, is the only positive integer for which is a perfect square.
Looking at residues mod 3, we see that must be odd, since even values of leads to . Also as shown in solution 2, for , must be even. Hence, for , can neither be odd nor even. The only possible solution is then , which indeed works.
Take the whole expression mod 12. Note that the perfect squares can only be of the form 0, 1, 4 or 9 (mod 12). Note that since the problem is asking for positive integers, is always divisible by 12, so this will be disregarded in this process. If is even, then and . Therefore, the sum in the problem is congruent to , which cannot be a perfect square. Now we check the case for which is an odd number greater than 1. Then and . Therefore, this sum would be congruent to , which cannot be a perfect square. The only case we have not checked is . If , then the sum in the problem is equal to . Therefore the only possible value of such that is a perfect square is .
Sinceit is natural to consider a change of variables:with the inverse mapping given by:With this change of variables, the constraint becomeswhile the left side of the inequality we need to prove is now
Therefore it remains to prove that
We note that the product of the three (positive) terms is 1/8, therefore by AM-GM their mean is at least 1/2, and thus their sum is at least 3/2 and we are done.
Rearranging the condition yields that
Now note that
Summing this for all pairs of gives that
Note that all the points belong to the parabola which we will denote . This parabola has a focus and directrix which we will denote . We will prove that the desired locus is .
First note that for any point on , the line is the tangent line to at . This is because contains and because . If you don't like calculus, you can also verify that has equation and does not intersect at any point besides . Now for any point on let be the foot of the perpendicular from onto . Then by the definition of parabolas, . Let be the perpendicular bisector of . Since , passes through . Suppose is any other point on and let be the foot of the perpendicular from to . Then in right , is a leg and so . Therefore cannot be on . This implies that is exactly the tangent line to at , that is . So we have proved Lemma 1: If is a point on then is the perpendicular bisector of .
We need another lemma before we proceed. Lemma 2: If is on the circumcircle of with orthocenter , then the reflections of across , , and are collinear with .
Proof of Lemma 2: Say the reflections of and across are and , and the reflections of and across are and . Then we angle chase where is the measure of minor arc on the circumcircle of . This implies that is on the circumcircle of , and similarly is on the circumcircle of . Therefore , and . So . Since , , and are collinear it follows that , and are collinear. Similarly, the reflection of over also lies on this line, and so the claim is proved.
Now suppose , , and are three points of and let , , and . Also let , , and be the midpoints of , , and respectively. Then since and , it follows that , , and are collinear. By Lemma 1, we know that , , and are the feet of the altitudes from to , , and . Therefore by the Simson Line Theorem, is on the circumcircle of . If is the orthocenter of , then by Lemma 2, it follows that is on . It follows that the locus described in the problem is a subset of .
Since we claim that the locus described in the problem is , we still need to show that for any choice of on there exists an equilateral triangle with center such that the lines containing the sides of the triangle are tangent to . So suppose is any point on and let the circle centered at through be . Then suppose is one of the intersections of with . Let , and construct the ray through on the same halfplane of as that makes an angle of with . Say this ray intersects in a point besides , and let be the perpendicular bisector of . Since and , we have . By the inscribed angles theorem, it follows that . Also since and are both radii, is isosceles and . Let be the reflection of across . Then , and so . It follows that is on , which means is the perpendicular bisector of .
Let intersect in points and and let be the point diametrically opposite to on . Also let intersect at . Then . Therefore is a right triangle and so . So and by the inscribed angles theorem, . Since it follows that is and equilateral triangle with center .
By Lemma 2, it follows that the reflections of across and , call them and , lie on . Let the intersection of and the perpendicular to through be , the intersection of and the perpendicular to through be , and the intersection of and the perpendicular to through be . Then by the definitions of , , and it follows that for and so , , and are on . By lemma 1, , , and . Therefore the intersections of , , and form an equilateral triangle with center , which finishes the proof. --Killbilledtoucan
Note that the lines arerespectively. It is easy to deduce that the three points of intersection areThe slopes of each side of this equilateral triangle areand we want to find the locus ofWe know thatfor some Therefore, we can use the tangent addition formula to deduceandNow we show that can be any real number. Let's sayfor some real number Multiplying both sides by and rearranging yields a cubic in Clearly this cubic has at least one real solution. As can take on any real number, all values of are possible, and our answer is the lineOf course, as the denominator could equal 0, we must check The left side is nonzero, while the right side is zero, so these values of do not contribute to any values of So, our answer remains the same.
Let be the reflection function on the set of words, namely for all words , . Then the following property is evident (e.g. by mathematical induction):
, for any words , .
a, b, ab, bab, We use mathematical induction to prove the statement of the problem. First, , , are palindromes. Second, suppose , and that the words (, , , ) are all palindromes, i.e. . Now, consider the word :
By the principle of mathematical induction, the statement of the problem is proved.
Let be the center of the circle, and let be the intersection of and . Let be and be .
, ,
Thus is a cyclic quadrilateral and and so is the midpoint of chord .
~pandadude
Let be the center of the circle, and let be the midpoint of . Let denote the circle with diameter . Since , , , and all lie on .
Since quadrilateral is cyclic, . Triangles and are congruent, so , so . Because and are parallel, lies on (using Euclid's Parallel Postulate).
Note that by Lemma 9.9 of EGMO, is a harmonic bundle. We project through onto ,Where is the point at infinity for parallel lines and . Thus, we get , and is the midpoint of .
Connet segment PO, and name the interaction of PO and the circle as point M.
Since PB and PD are tangent to the circle, it's easy to see that M is the midpoint of arc BD.
∠ BOA = 1/2 arc AB + 1/2 arc CE
Since AC // DE, arc AD = arc CE,
thus, ∠ BOA = 1/2 arc AB + 1/2 arc AD = 1/2 arc BD = arc BM = ∠ BOM
Therefore, PBOM is cyclic, ∠ PFO = ∠ OBP = 90°, AF = AC (F is the interaction of BE and AC)
BE bisects AC, proof completed!
We will show that is a counter-example.
Since , we see that for any integer , . Let be the residue of . Note that since and , necessarily , and thus the remainder in question is . We want to show that is an odd power of 2 for some , and thus not a power of 4.
Let for some odd prime . Then . Since 2 is co-prime to , we haveand thus
Therefore, for a counter-example, it suffices that be odd. Choosing , we have . Therefore, and thusSince is not a power of 4, we are done.
Lemma (useful for all situations): If and are positive integers such that divides , then divides . Proof: . Replacing the with a and dividing out the powers of two should create an easy induction proof which will be left to the reader as an Exercise.
Consider . We will prove that this case is a counterexample via contradiction.
Because , we will assume there exists a positive integer such that divides and . Dividing the powers of from LHS gives divides . Hence, divides . Because is odd, divides . Euler's theorem gives and so . However, , a contradiction. Thus, is a valid counterexample.
© 2024. All Rights Reserved. 沪ICP备2023009024号-1