完整版真题免费下载
+答案解析请参考文末
Given a triangle , let and be points on segments and , respectively, such that . Let and be distinct points on segment such that lies between and , , and . Prove that , , , are concyclic (in other words, these four points lie on a circle).
Find all integers such that among any positive real numbers , , , withthere exist three that are the side lengths of an acute triangle.
Let , , be positive real numbers. Prove that
Let be an irrational number with , and draw a circle in the plane whose circumference has length 1. Given any integer , define a sequence of points , , , as follows. First select any point on the circle, and for define as the point on the circle for which the length of arc is , when travelling counterclockwise around the circle from to . Suppose that and are the nearest adjacent points on either side of . Prove that .
For distinct positive integers , , define to be the number of integers with such that the remainder when divided by 2012 is greater than that of divided by 2012. Let be the minimum value of , where and range over all pairs of distinct positive integers less than 2012. Determine .
Let be a point in the plane of triangle , and a line passing through . Let , , be the points where the reflections of lines , , with respect to intersect lines , , , respectively. Prove that , , are collinear.
Since , the circumcircle of triangle is tangent to at . Similarly, since , the circumcircle of triangle is tangent to at .
For the sake of contradiction, suppose that the circumcircles of triangles and are not the same circle. Since , lies on the radical axis of both circles. However, both circles pass through and , so the radical axis of both circles is . Hence, lies on , which is a contradiction.
Therefore, the two circumcircles are the same circle. In other words, , , , and all lie on the same circle.
Note that (as in the first solution) the circumcircle of triangle is tangent to at . Similarly, since , the circumcircle of triangle is tangent to at .
Now, suppose these circumcircles are not the same circle. They already intersect at and , so they cannot intersect anymore. Thus, AS must touch the two circumcircles at points and , with on the circumcircle of triangle . By Power of a Point, and . Hence, because , , a contradiction because then, as they lie on the same line segment, M and N must be the same point! (Note line segment, not line.) Hence, the two circumcircles are the same circle.
We claim that any configuration of 's produces a distinct garden. To verify this claim, we show that, for any cell that is nonzero, the value of that cell is its distance away from the nearest zero, where distance means the shortest chain of adjacent cells connecting two cells. Now, since we know that any cell with a nonzero value must have a cell adjacent to it that is less than its value, there is a path that goes from this cell to the that is decreasing, which means that the value of the cell must be its distance from the as the path must end. From this, we realize that, for any configuration of 's, the value of each of the cells is simply its distance from the nearest , and therefore one garden is produced for every configuration of 's.
However, we also note that there must be at least one in the garden, as otherwise the smallest number in the garden, which is less than or equal to all of its neighbors, is , which violates condition . There are possible configurations of and not in the garden, one of which has no 's, so our total amount of configurations is
Note: "bordering" and "surrounding" mean that two cells have to touch on a side; one vertex is not good enough.
We note that there is no real step to begin the problem, so start by constructing the base case: put ALL the zeroes into the board. Then note that all squares bordering it (corners alone don't count) have to be . After doing that, what can a cell bordering a 1 have as its value? Either 1 or 2, based on (i). But if it were 1, then all cells surrounding it would have at least 1 as their value by (i). And by (ii) the value would have to be 0, which contradicts our initial construction. Therefore, all the cells bordering a 1 have to be 2. Looks too simple for JMO, right? We apply the same logic to a cell bordering value : either it is or . If it is , however, by constraint (i) and (ii) we realize that this cell has to be 0 (because neighbors cannot be less than it), contradicting our construction again! Therefore, that cell has to be . And so on until the grid is filled. Basically the problem reduces to finding all 0s, surrounding them with 1s, and surrounding the 1s with 2s, etc. Beautiful! I have established a bijection between the zeros placed in the grid and the arrangement, therefore there are solutions right? NO! Take the smallest cell. It has to be via criterion (ii). So a case with zero zeros is apocryphal. Our answer is .
By the Cauchy-Schwarz inequality,soSince ,Hence,
Again by the Cauchy-Schwarz inequality,soSince ,Hence,
Therefore,
Titu's Lemma: The sum of multiple fractions in the form where and are sequences of real numbers is greater than of equal to the square of the sum of all divided by the sum of all , where i is a whole number less than n+1. Titu's Lemma can be proved using the Cauchy-Schwarz Inequality after multiplying out the denominator of the RHS.
Consider the LHS of the proposed inequality. Split up the numerators and multiply both sides of the fraction by either a or 3a to make the LHS(Cyclic notation is a special notation in which all permutations of (a,b,c) is the summation command.)
Then use Titu's Lemma on all terms:owing to the fact that , which is actually equivalent to !
We proceed to prove that
(then the inequality in question is just the cyclic sum of both sides, since)
Indeed, by AP-GP, we have
and
Summing up, we have
which is equivalent to:
Dividing from both sides, the desired inequality is proved.
By Cauchy-Schwarz,
(by AM-GM)as desired.
Use mathematical induction. For it is true because one point can't be closest to in both ways, and that . Suppose that for some , the nearest adjacent points and on either side of satisfy . Then consider the nearest adjacent points and on either side of . It is by the assumption of the nearness we can see that either still holds, or jumps into the interior of the arc , so that or equals to . Let's consider the following two cases.
(i) Suppose .
Since the length of the arc is (where equals to subtracted by the greatest integer not exceeding ) and length of the arc is , we now consider a point which is defined by traveling clockwise on the circle such that the length of arc is . We claim that is in the interior of the arc . Algebraically, it is equivalent to either or .
Suppose the latter fails, i.e. . Then suppose and , where , are integers and ( is not zero because is irrational). We now haveand
Therefore is either closer to than on the side, or closer to than on the side. In other words, is the closest adjacent point of on the side, or the closest adjacent point of on the side. Hence or is , therefore .
(ii) Suppose Then either when and , or when one of or is .
In either case, is true.
First we'll show that , then we'll find an example that have .
Let be the remainder when is divided by 2012, and let be defined similarly for . First, we know that, if , then and . This implies that, since and , . Similarly, if then , establishing a one-to-one correspondence between the number of such that . Thus, if is the number of such that and , then . Now I'll show that .
If , then I'll show you that . This is actually pretty clear; assume that's not true and set up a congruence relation:Since is relatively prime to 2012, it is invertible mod 2012, so we must have . Since , this means , which the problem doesn't allow, thus contradiction, and . Additionally, if , then , then based on what we know about from the previous paragraph, is at least as large as the number of k relatively prime to 2012. Thus, . Thus, .
To show 502 works, consider . For all even we have , so it doesn't count towards . Additionally, if then , so the only number that count towards are the odd numbers not divisible by 503. There are 1004 such numbers. However, for all such odd k not divisible by 503 (so numbers relatively prime to 2012), we have and is also relatively prime to 2012. Since under those conditions exactly one of and is true, we have at most 1/2 of the 1004 possible k actually count to , so , so .
Let and . Notice that this means and . Thus, for every value of where , there is a value of where . Therefore, we merely have to calculate times the number of values of for which and .
However, the answer is NOT ! This is because we must count the cases where the value of makes or where .
So, let's start counting.
If is even, we have either or . So, or . We have even values of (which is all the possible even values of , since the two above requirements don't put any bounds on at all).
If is odd, if or , then or . Otherwise, or , which is impossible to satisfy, given the domain . So, we have values of .
In total, we have values of which makes or , so there are values of for which and . Thus, by our reasoning above, our solution is .
The key insight in this problem is noticing that when is higher than , is lower than , except at residues*. Also, they must be equal many times. . We should have multiples of . After trying all three pairs and getting as our answer, we win. But look at the idea. What if we just took and plugged it in with ? We get .
Say that the problem is a race track with spots. To intersect the most, we should get next to each other a lot so the negation is high. As , we intersect at a lot of multiples of .
By the law of sines on triangle ,so
Similarly,Hence,
Since angles and are supplementary or equal, depending on the position of on ,Similarly,
By the reflective property, and are supplementary or equal, soSimilarly,Therefore,so by Menelaus's theorem, , , and are collinear.
翰林课程体验,退费流程快速投诉邮箱: yuxi@linstitute.net 沪ICP备2023009024号-1