Note: For any geometry problem whose statement begins with an asterisk , the first page of the solution must be a large, in-scale, clearly labeled diagram. Failure to meet this requirement will result in an automatic 1-point deduction.
There are bowls arranged in a row, numbered through , where and are given positive integers. Initially, each of the first bowls contains an apple, and each of the last bowls contains a pear.
A legal move consists of moving an apple from bowl to bowl and a pear from bowl to bowl , provided that the difference is even. We permit multiple fruits in the same bowl at the same time. The goal is to end up with the first bowls each containing a pear and the last bowls each containing an apple. Show that this is possible if and only if the product is even.
Let be the set of all integers. Find all pairs of integers for which there exist functions and satisfyingfor all integers .
Let be a cyclic quadrilateral satisfying . The diagonals of intersect at . Let be a point on side satisfying . Show that line bisects .
Let be a triangle with obtuse. The -excircle is a circle in the exterior of that is tangent to side of the triangle and tangent to the extensions of the other two sides. Let be the feet of the altitudes from and to lines and , respectively. Can line be tangent to the -excircle?
Let be a nonnegative integer. Determine the number of ways that one can choose sets , for integers with such that:
for all , the set has elements; and
whenever and
Two rational numbers and are written on a blackboard, where and are relatively prime positive integers. At any point, Evan may pick two of the numbers and written on the board and write either their arithmetic mean or their harmonic mean on the board as well. Find all pairs such that Evan can write on the board in finitely many steps.
Claim: If and are both odd, then the end goal of achieving pears followed by apples is impossible.
Proof: Let and denote the number of apples and the number of pears in odd-numbered positions, respectively. We show that is invariant. Notice that if and are odd, then and both decrease by 1, as one apple and one pear are both moved from odd-numbered positions to even-numbered positions. If and are even, then and both increase by 1.
Because the starting configuration has odd-numbered apples and odd-numbered pears, the initial value of is . But the desired ending configuration has odd-numbered pears and odd-numbered apples, so . As is invariant, it is impossible to attain the desired ending configuration.
Claim: If at least one of and is even, then the end goal of achieving pears followed by apples is possible.
Proof: Without loss of generality, assume is even. If only is even, then we can number the bowls in reverse, and swap apples with pears. We use two inductive arguments to show that is achievable for all , then to show that is achievable for all even and all .
Base case: . Then we can easily achieve the ending configuration in two moves, by moving the apple in bowl #1 and the pear in bowl #3 so that everything is in bowl #2, then finishing the next move.
Inductive step: suppose that for (even) apples and pears, that with apples and pears, the ending configuration is achievable. We will show two things: i) achievable with apples and pears, and ii) achievable with apples and pears.
i) Apply the process on the apples and first pairs to get a configuration . Now we will "swap" the leftmost apple with the last pear by repeatedly applying the move on just these two fruits (as is even, the difference is even). This gives a solution for apples and pears. In particular, this shows that for all is achievable.
ii) To show is achievable, given that is achievable, apply the process on the last apples and pears to get the configuration . Then, because we have shown that 2 apples and pears is achievable in i), we can now reverse the first two apples and pears.
Thus for even, the desired ending configuration is achievable.
Combining the above two claims, we see that this is possible if and only if is even.
"If" part: Note that two opposite fruits can be switched if they have even distance. If one of , is odd and the other is even, then switch with , with , with ... until all of one fruit is switched. If both are even, then if , then switch with , with , with ... until all of one fruit is switched; if then switch with , with , with ... until all of one fruit is switched. Each of these processes achieve the end goal.
"Only if" part: Assign each apple a value of and each pear a value of . At any given point in time, let be the sum of the values of the fruit in even-numbered bowls. Because and both are odd, at the beginning there are apples in even bowls and pears in even bowls, so at the beginning . After the end goal is achieved, there are apples in even bowls and pears in even bowls, so after the end goal is achieved . However, because two opposite fruits must have the same parity to move and will be the same parity after they move, we see that is invariant, which is a contradiction; hence, it is impossible for the end goal to be reached if is odd.
We claim that the answer is .
Proof: and are surjective because and can take on any integral value, and by evaluating the parentheses in different order, we find and . We see that if then to as well, so similarly if then , so now assume .
We see that if then , if then , if then ... if then . This means that the -element collection contains all residues mod since is surjective, so . Doing the same to yields that , so this means that only can work.
For let and , and for let and , so does work and are the only solutions, as desired.
Let . Also, let be the midpoint of .
Note that only one point satisfies the given angle condition. With this in mind, construct with the following properties:
Claim:
Proof:
The conditions imply the similarities and whence as desired.
Claim: is a symmedian in
Proof:
We have
as desired.
Since is the isogonal conjugate of , . However implies that is the midpoint of from similar triangles, so we are done.
~sriraamster
By monoticity, we can see that the point is unique. Therefore, if we find another point with all the same properties as , then
Part 1) Let be a point on such that , and . Obviously exists because adding the two equations gives , which is the problem statement. Notice that converse PoP givesTherefore, , so does indeed satisfy all the conditions does, so . Hence, and .
Part 2) Define as the midpoint of . Furthermore, create a point such that and . Obviously must be a parallelogram. Now we set up for Jacobi's. The problem already gives us that , which is good for starters. Furthermore, tells us thatThis gives us our second needed angle equivalence. Lastly, will givewhich is our last necessary angle equivalence to apply Jacobi's. Finally, applying Jacobi's tells us that , , and are concurrent , , collinear. Additionally, since parallelogram diagonals bisect each other, , , and are collinear, so finally we obtain that , , and are collinear, as desired.
Instead of trying to find a synthetic way to describe being tangent to the -excircle (very hard), we instead consider the foot of the perpendicular from the -excircle to , hoping to force something via the length of the perpendicular. It would be nice if there were an easier way to describe , something more closely related to the -excircle; as we are considering perpendicularity, if we could generate a line parallel to , that would be good.
So we recall that it is well known that triangle is similar to . This motivates reflecting over the angle bisector at to obtain , which is parallel to for obvious reasons.
Furthermore, as reflection preserves intersection, is tangent to the reflection of the -excircle over the -angle bisector. But it is well-known that the -excenter lies on the -angle bisector, so the -excircle must be preserved under reflection over the -excircle. Thus is tangent to the -excircle.Yet for all lines parallel to , there are only two lines tangent to the -excircle, and only one possibility for , so .
Thus as is isoceles,contradiction. -alifenix-
The answer is no.
Suppose otherwise. Consider the reflection over the bisector of . This swaps rays and ; suppose and are sent to and . Note that the -excircle is fixed, so line must also be tangent to the -excircle.
Since is cyclic, we obtain , so . However, as is a chord in the circle with diameter , .
If then too, so then lies inside and cannot be tangent to the excircle.
The remaining case is when . In this case, is also a diameter, so is a rectangle. In particular . However, by the existence of the orthocenter, the lines and must intersect, contradiction.
Note that there are ways to choose , because there are ways to choose which number is, ways to choose which number to append to make , ways to choose which number to append to make ... After that, note that contains the in and 1 other element chosen from the 2 elements in not in so there are 2 ways for . By the same logic there are 2 ways for as well so total ways for all , so doing the same thing more times yields a final answer of .
There are ways to choose . Since, there are ways to choose , and after that, to generate , you take and add 2 new elements, getting you ways to generate . And you can keep going down the line, and you get that there are ways to pick Then we can fill out the rest of the gird. First, let’s prove a lemma.
Claim: If we know what is and what is, then there are 2 choices for both and .
Proof: Note and , so . Let be a set that contains all the elements in that are not in . . We know contains total elements. And contains total elements. That means contains only 2 elements since . Let’s call these 2 elements . . contains 1 elements more than and 1 elements less than . That 1 elements has to select from . It’s easy to see or , so there are 2 choice for . Same thing applies to .
We used our proved lemma, and we can fill in then we can fill in the next diagonal, until all are filled, where . But, we haven’t finished everything! Fortunately, filling out the rest of the diagonals in a similar fashion is pretty simple. And, it’s easy to see that we have made decisions, each with 2 choices, when filling out the rest of the grid, so there are ways to finish off.
To finish off, we have ways to fill in the gird, which gets us
We claim that all odd work if is a positive power of 2.
Proof: We first prove that works. By weighted averages we have that can be written, so the solution set does indeed work. We will now prove these are the only solutions.
Assume that , so then for some odd prime . Then , so . We see that the arithmetic mean is and the harmonic mean is , so if 1 can be written then and which is obviously impossible, and we are done.
完整版真题资料可以底部二维码免费领取↓↓↓
© 2024. All Rights Reserved. 沪ICP备2023009024号-1